Home
Class 14
MATHS
Simplify: (213xx213+187xx187)...

Simplify: `(213xx213+187xx187)`

A

80338

B

80438

C

60338

D

60438

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 213 \times 213 + 187 \times 187 \), we can follow these steps: ### Step 1: Rewrite the expression using squares We can express the terms as squares: \[ 213 \times 213 = 213^2 \] \[ 187 \times 187 = 187^2 \] So, the expression becomes: \[ 213^2 + 187^2 \] ### Step 2: Use the identity for the sum of squares We can use the identity: \[ A^2 + B^2 = (A + B)^2 - 2AB \] Here, let \( A = 213 \) and \( B = 187 \). Therefore, we can rewrite the expression as: \[ 213^2 + 187^2 = (213 + 187)^2 - 2 \times 213 \times 187 \] ### Step 3: Calculate \( A + B \) Now, calculate \( A + B \): \[ 213 + 187 = 400 \] ### Step 4: Calculate \( (A + B)^2 \) Now, calculate \( (A + B)^2 \): \[ 400^2 = 160000 \] ### Step 5: Calculate \( 2AB \) Next, calculate \( 2 \times 213 \times 187 \): \[ 213 \times 187 = 39831 \] So, \[ 2 \times 39831 = 79662 \] ### Step 6: Substitute back into the identity Now substitute back into the identity: \[ 213^2 + 187^2 = 160000 - 79662 \] ### Step 7: Perform the subtraction Now, perform the subtraction: \[ 160000 - 79662 = 80338 \] ### Final Answer Thus, the simplified expression \( 213 \times 213 + 187 \times 187 \) equals: \[ \boxed{80338} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: 12xx105

Simplify : 3xx4^4

Simplify: 17 xx 109

Simplify : 0xx10^2

Simplify : (3 xx 2)^4

Simplify: 101 xx 105