Home
Class 14
MATHS
What is value the of 5/(sqrt2+1)+5/(sqrt...

What is value the of `5/(sqrt2+1)+5/(sqrt3+sqrt2)+5/(sqrt4+sqrt3)+….. 5/(sqrt121+sqrt120)?`
(a)25
(b)50
(c)100
(d)75

A

25

B

50

C

100

D

75

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = \frac{5}{\sqrt{2}+1} + \frac{5}{\sqrt{3}+\sqrt{2}} + \frac{5}{\sqrt{4}+\sqrt{3}} + \ldots + \frac{5}{\sqrt{121}+\sqrt{120}} \] ### Step 1: Factor out the common term Since each term in the sum has a common factor of 5 in the numerator, we can factor it out: \[ S = 5 \left( \frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \ldots + \frac{1}{\sqrt{121}+\sqrt{120}} \right) \] ### Step 2: Simplify each term using conjugates For each term of the form \(\frac{1}{\sqrt{n} + \sqrt{n-1}}\), we can multiply the numerator and the denominator by the conjugate \(\sqrt{n} - \sqrt{n-1}\): \[ \frac{1}{\sqrt{n} + \sqrt{n-1}} \cdot \frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n} - \sqrt{n-1}} = \frac{\sqrt{n} - \sqrt{n-1}}{(\sqrt{n})^2 - (\sqrt{n-1})^2} = \frac{\sqrt{n} - \sqrt{n-1}}{n - (n-1)} = \sqrt{n} - \sqrt{n-1} \] ### Step 3: Rewrite the sum Now, we can rewrite \(S\): \[ S = 5 \left( (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + \ldots + (\sqrt{121} - \sqrt{120}) \right) \] ### Step 4: Notice the telescoping nature of the series The series is telescoping, meaning that most terms will cancel out: \[ S = 5 \left( \sqrt{121} - 1 \right) \] ### Step 5: Calculate the final value Since \(\sqrt{121} = 11\): \[ S = 5 \left( 11 - 1 \right) = 5 \times 10 = 50 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{50} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt5)(2sqrt3 - sqrt5)

(2sqrt3+sqrt5)(2sqrt3+sqrt5)

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

1/(sqrt(2)+sqrt(3)+sqrt(5))+1/(sqrt(2)+sqrt(3)-sqrt(5))

The sum of the series 1/(sqrt2 + sqrt1) + 1/(sqrt2 + sqrt3) + ……+ 1/ (sqrt120 + sqrt121) is .