Home
Class 14
MATHS
Find the value of {(216)^(2/3)+(36)^(-1/...

Find the value of `{(216)^(2/3)+(36)^(-1/2)}`

A

`(216)/(6)`

B

`(218)/(6)`

C

`(215)/(6)`

D

`(217)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (216)^{2/3} + (36)^{-1/2} \), we will break down the calculations step by step. ### Step 1: Calculate \( (216)^{2/3} \) To simplify \( (216)^{2/3} \), we can first find \( (216)^{1/3} \) and then square the result. 1. **Find the cube root of 216**: \[ 216 = 6^3 \implies (216)^{1/3} = 6 \] 2. **Now square the result**: \[ (216)^{2/3} = (6)^2 = 36 \] ### Step 2: Calculate \( (36)^{-1/2} \) Next, we simplify \( (36)^{-1/2} \). 1. **Find the square root of 36**: \[ 36 = 6^2 \implies (36)^{1/2} = 6 \] 2. **Apply the negative exponent**: \[ (36)^{-1/2} = \frac{1}{(36)^{1/2}} = \frac{1}{6} \] ### Step 3: Combine the results Now we can add the results from Step 1 and Step 2: \[ (216)^{2/3} + (36)^{-1/2} = 36 + \frac{1}{6} \] ### Step 4: Convert to a common denominator To add \( 36 \) and \( \frac{1}{6} \), we convert \( 36 \) into a fraction with a denominator of 6: \[ 36 = \frac{36 \times 6}{6} = \frac{216}{6} \] Now we can add: \[ \frac{216}{6} + \frac{1}{6} = \frac{216 + 1}{6} = \frac{217}{6} \] ### Final Answer Thus, the final value is: \[ \frac{217}{6} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1296)^(0.75)(36)^(-1)

(0.216)^(1/3)

Find the value of (4)/((216)^(-2//3))-(1)/((256)^(-3//4))

The value of (216^((2)/(3)))^((1)/(2)) is

Find the value of ( 1^3 + 2^3 + 3^3 ) ^(-1/2)

Find the value of root(4)((36)^(-2))

Find the value of [(216)/(2197)]^((1)/(3))

Find the value of :(1)x^(3)+y^(3)-12xy+64 when x+y+4=0(2)x^(3)-8y^(3)-36xy+216 when x-2y+6=0

Find the value of [ { (1/2 )^3 }^(-2 ) ]^(-1 ) is