Home
Class 14
MATHS
If p=sqrt(72-sqrt(72-sqrt(72-sqrt72-.......

If `p=sqrt(72-sqrt(72-sqrt(72-sqrt72-......oo)))` then find the value of `2p^(2)+1`

A

`-129`

B

`-163`

C

129

D

163

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( p = \sqrt{72 - \sqrt{72 - \sqrt{72 - \sqrt{72 - \ldots}}}} \), we will first express the infinite nested radical in a simpler form. ### Step 1: Set up the equation We start by recognizing that the expression inside the square root is the same as \( p \): \[ p = \sqrt{72 - p} \] ### Step 2: Square both sides To eliminate the square root, we square both sides of the equation: \[ p^2 = 72 - p \] ### Step 3: Rearrange the equation Next, we rearrange the equation to bring all terms to one side: \[ p^2 + p - 72 = 0 \] ### Step 4: Solve the quadratic equation Now we can use the quadratic formula to solve for \( p \): \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 1, c = -72 \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot (-72) = 1 + 288 = 289 \] Now substituting back into the quadratic formula: \[ p = \frac{-1 \pm \sqrt{289}}{2 \cdot 1} = \frac{-1 \pm 17}{2} \] Calculating the two possible values for \( p \): 1. \( p = \frac{16}{2} = 8 \) 2. \( p = \frac{-18}{2} = -9 \) (not valid since \( p \) must be non-negative) Thus, we have: \[ p = 8 \] ### Step 5: Calculate \( 2p^2 + 1 \) Now we substitute \( p \) back into the expression \( 2p^2 + 1 \): \[ 2p^2 + 1 = 2(8^2) + 1 = 2(64) + 1 = 128 + 1 = 129 \] ### Final Answer The value of \( 2p^2 + 1 \) is: \[ \boxed{129} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of, 72)^(2

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value of qx^(2)-2px+q

The value of sqrt(2sqrt(2sqrt(2...oo)))

Find the value of |[7,2],[4,-2]|

Find the value of |[7,2],[4,-2]|

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) find the value of qx^(2)-2px+q

If p=3sqrt(sqrt(2)+1)-3sqrt(sqrt(2)-1, then the ) value of (p^(3)+3p+1) is less then