Home
Class 14
MATHS
DeltaXYZ is right angled at Y. If ...

`DeltaXYZ is right angled at Y. If X=45^(@)`, then find the value of `(cosecZ+sqrt3//2)`

A

`(2sqrt2+sqrt3)//2`

B

`5//6`

C

`(1+2sqrt3)//2`

D

`(sqrt2+1)//sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the Triangle We have a right-angled triangle ΔXYZ with the right angle at Y. Given that angle X = 45°, we can deduce that angle Z must also be 45° since the sum of angles in a triangle is 180°. ### Step 2: Identify the Angles - Angle X = 45° - Angle Y = 90° - Angle Z = 45° ### Step 3: Use Trigonometric Ratios We need to find the value of \( \csc Z + \frac{\sqrt{3}}{2} \). ### Step 4: Find \( \csc Z \) The cosecant function is the reciprocal of the sine function: \[ \csc Z = \frac{1}{\sin Z} \] Since angle Z is 45°: \[ \sin 45° = \frac{1}{\sqrt{2}} \] Thus, \[ \csc Z = \frac{1}{\sin 45°} = \sqrt{2} \] ### Step 5: Calculate \( \csc Z + \frac{\sqrt{3}}{2} \) Now we can substitute \( \csc Z \) into our expression: \[ \csc Z + \frac{\sqrt{3}}{2} = \sqrt{2} + \frac{\sqrt{3}}{2} \] ### Step 6: Final Expression The final expression is: \[ \sqrt{2} + \frac{\sqrt{3}}{2} \] ### Step 7: Conclusion Thus, the value of \( \csc Z + \frac{\sqrt{3}}{2} \) is \( \sqrt{2} + \frac{\sqrt{3}}{2} \). ---
Promotional Banner