Home
Class 14
MATHS
If p+(1)/(p)=112, find (p-112)^(15)+(1)/...

If `p+(1)/(p)=112`, find `(p-112)^(15)+(1)/(p^(15))`.

A

1

B

15

C

10

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( p + \frac{1}{p} = 112 \) and find the value of \( (p - 112)^{15} + \frac{1}{p^{15}} \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ p + \frac{1}{p} = 112 \] ### Step 2: Isolate \( p - 112 \) We can express \( p \) in terms of \( p - 112 \): \[ p = 112 - \frac{1}{p} \] ### Step 3: Find \( p^{15} \) To find \( p^{15} \), we can use the identity: \[ p^2 + 1 = 112p \] This can be rearranged to form a quadratic equation: \[ p^2 - 112p + 1 = 0 \] Using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ p = \frac{112 \pm \sqrt{112^2 - 4 \cdot 1}}{2} \] Calculating the discriminant: \[ 112^2 - 4 = 12544 - 4 = 12540 \] Thus, \[ p = \frac{112 \pm \sqrt{12540}}{2} \] ### Step 4: Calculate \( (p - 112)^{15} + \frac{1}{p^{15}} \) Using the identity \( p + \frac{1}{p} = 112 \), we can derive: \[ \frac{1}{p^{15}} = \frac{1}{(p + \frac{1}{p})^{15}} = 0 \] This implies that: \[ (p - 112)^{15} + \frac{1}{p^{15}} = 0 \] ### Final Answer Thus, the value of \( (p - 112)^{15} + \frac{1}{p^{15}} \) is: \[ \boxed{0} \]
Promotional Banner