Home
Class 14
MATHS
(√289/34) × (68/√1156) × (√961/62) = ?...

(√289/34) × (68/√1156) × (√961/62) = ?

A

1/2

B

3/4

C

5/6

D

7/8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{289}/34) \times (68/\sqrt{1156}) \times (\sqrt{961}/62)\), we will break it down step by step. ### Step 1: Calculate \(\sqrt{289}\) \[ \sqrt{289} = 17 \] ### Step 2: Calculate \(\sqrt{1156}\) \[ \sqrt{1156} = 34 \] ### Step 3: Calculate \(\sqrt{961}\) \[ \sqrt{961} = 31 \] ### Step 4: Substitute the square roots back into the expression Now we substitute the values we found into the original expression: \[ \frac{17}{34} \times \frac{68}{34} \times \frac{31}{62} \] ### Step 5: Simplify \(\frac{17}{34}\) \[ \frac{17}{34} = \frac{1}{2} \] ### Step 6: Simplify \(\frac{68}{34}\) \[ \frac{68}{34} = 2 \] ### Step 7: Simplify \(\frac{31}{62}\) \[ \frac{31}{62} = \frac{1}{2} \] ### Step 8: Combine the simplified fractions Now we can combine these simplified fractions: \[ \frac{1}{2} \times 2 \times \frac{1}{2} \] ### Step 9: Calculate the final result \[ \frac{1}{2} \times 2 = 1 \] \[ 1 \times \frac{1}{2} = \frac{1}{2} \] Thus, the final answer is: \[ \frac{1}{2} \] ### Summary of Steps: 1. Calculate \(\sqrt{289}\) = 17. 2. Calculate \(\sqrt{1156}\) = 34. 3. Calculate \(\sqrt{961}\) = 31. 4. Substitute back into the expression. 5. Simplify \(\frac{17}{34}\) to \(\frac{1}{2}\). 6. Simplify \(\frac{68}{34}\) to 2. 7. Simplify \(\frac{31}{62}\) to \(\frac{1}{2}\). 8. Combine the simplified fractions. 9. Calculate the final result.
Promotional Banner