Home
Class 14
MATHS
If (a)/(b)=(4)/(5) and (b)/(c)=(15)/(16)...

If `(a)/(b)=(4)/(5) and (b)/(c)=(15)/(16)` then `(18c^(2)-7a^(2))/(45c^(2)+20a^(2))` is equal to
यदि `(a)/(b)=(4)/(5)` और `(b)/(c)=(15)/(16)` तो `(18c^(2)-7a^(2))/(45c^(2)+20a^(2))` का मान है -

A

`(1)/(3)`

B

`(2)/(5)`

C

`(3)/(4)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratios: 1. \(\frac{a}{b} = \frac{4}{5}\) 2. \(\frac{b}{c} = \frac{15}{16}\) ### Step 1: Express \(a\) in terms of \(b\) From the first ratio, we can express \(a\) as: \[ a = \frac{4}{5}b \] ### Step 2: Express \(b\) in terms of \(c\) From the second ratio, we can express \(b\) as: \[ b = \frac{15}{16}c \] ### Step 3: Substitute \(b\) in the expression for \(a\) Now, we substitute the expression for \(b\) into the expression for \(a\): \[ a = \frac{4}{5} \left(\frac{15}{16}c\right) = \frac{4 \times 15}{5 \times 16}c = \frac{60}{80}c = \frac{3}{4}c \] ### Step 4: Substitute \(a\) and \(c\) into the expression We need to evaluate the expression: \[ \frac{18c^2 - 7a^2}{45c^2 + 20a^2} \] Substituting \(a = \frac{3}{4}c\): \[ a^2 = \left(\frac{3}{4}c\right)^2 = \frac{9}{16}c^2 \] ### Step 5: Substitute \(a^2\) into the expression Now we substitute \(a^2\) into the expression: \[ \frac{18c^2 - 7\left(\frac{9}{16}c^2\right)}{45c^2 + 20\left(\frac{9}{16}c^2\right)} \] This simplifies to: \[ \frac{18c^2 - \frac{63}{16}c^2}{45c^2 + \frac{180}{16}c^2} \] ### Step 6: Find a common denominator The common denominator for the terms in the numerator and denominator is 16: \[ = \frac{\frac{288}{16}c^2 - \frac{63}{16}c^2}{\frac{720}{16}c^2 + \frac{180}{16}c^2} \] This simplifies to: \[ = \frac{\frac{225}{16}c^2}{\frac{900}{16}c^2} \] ### Step 7: Simplify the expression The \(c^2\) cancels out: \[ = \frac{225}{900} \] This simplifies to: \[ = \frac{1}{4} \] ### Final Answer Thus, the value of the expression \(\frac{18c^2 - 7a^2}{45c^2 + 20a^2}\) is: \[ \frac{1}{4} \]

To solve the problem, we start with the given ratios: 1. \(\frac{a}{b} = \frac{4}{5}\) 2. \(\frac{b}{c} = \frac{15}{16}\) ### Step 1: Express \(a\) in terms of \(b\) From the first ratio, we can express \(a\) as: \[ ...
Promotional Banner