Home
Class 14
MATHS
If m=7+4 sqrt(3),(sqrt(m)+(1)/(sqrt(m)))...

If `m=7+4 sqrt(3),(sqrt(m)+(1)/(sqrt(m)))=?` / यदि ` m = 7 + 4 sqrt(3) , ( sqrt( m) + (1)/( sqrtm ) ) = ?`

A

-4

B

`-2 sqrt(3)`

C

`2 sqrt(3)`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{m} + \frac{1}{\sqrt{m}} \) given that \( m = 7 + 4\sqrt{3} \). ### Step-by-Step Solution: 1. **Identify the value of \( m \)**: \[ m = 7 + 4\sqrt{3} \] 2. **Find \( \sqrt{m} \)**: To find \( \sqrt{m} \), we can express \( m \) in a form that allows us to take the square root easily. Notice that: \[ m = (2 + \sqrt{3})^2 \] This is because: \[ (2 + \sqrt{3})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] Therefore, we have: \[ \sqrt{m} = 2 + \sqrt{3} \] 3. **Calculate \( \frac{1}{\sqrt{m}} \)**: Now we need to find \( \frac{1}{\sqrt{m}} \): \[ \frac{1}{\sqrt{m}} = \frac{1}{2 + \sqrt{3}} \] To simplify this, we can rationalize the denominator: \[ \frac{1}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})} = \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3} \] 4. **Combine \( \sqrt{m} \) and \( \frac{1}{\sqrt{m}} \)**: Now we can find \( \sqrt{m} + \frac{1}{\sqrt{m}} \): \[ \sqrt{m} + \frac{1}{\sqrt{m}} = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 2 + \sqrt{3} + 2 - \sqrt{3} = 4 \] ### Final Answer: \[ \sqrt{m} + \frac{1}{\sqrt{m}} = 4 \]

To solve the problem, we need to find the value of \( \sqrt{m} + \frac{1}{\sqrt{m}} \) given that \( m = 7 + 4\sqrt{3} \). ### Step-by-Step Solution: 1. **Identify the value of \( m \)**: \[ m = 7 + 4\sqrt{3} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

if a=7-4sqrt(3), find the value of sqrt(a)+(1)/(sqrt(a))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

In fig if AD=7sqrt(3) m, then BC.

AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60o . He moves away from the pole along the line BC to a point D such that C D""=""7""m . From D the angle of elevation of the point A is 45o . Then the height of the pole is (1) (7sqrt(3))/2dot1/(sqrt(3)-1)m (2) (7sqrt(3))/2dot(sqrt(3)+1)m (3) (7sqrt(3))/2dot(sqrt(3)-1)m (4) (7sqrt(3))/2dot1/(sqrt(3)+1)m

(sqrt(7)+sqrt(3))/(sqrt(7)-sqrt(3))-(sqrt(7)-sqrt(3))/(sqrt(7)+sqrt(3))

sqrt(2)+sqrt(3)+sqrt(7)-(1)/(sqrt(2)+sqrt(3)+sqrt(7))=?