Home
Class 14
MATHS
Evaluate (sin 30)/(cos 45) xx (sin 45)/(...

Evaluate `(sin 30)/(cos 45) xx (sin 45)/(cos 30)`

A

`(sqrt2)/(sqrt3)`

B

`(2)/(sqrt3)`

C

`(1)/(sqrt3)`

D

`(1)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\sin 30^\circ / \cos 45^\circ) \times (\sin 45^\circ / \cos 30^\circ)\), we can follow these steps: ### Step 1: Identify the values of trigonometric functions - \(\sin 30^\circ = \frac{1}{2}\) - \(\cos 45^\circ = \frac{1}{\sqrt{2}}\) - \(\sin 45^\circ = \frac{1}{\sqrt{2}}\) - \(\cos 30^\circ = \frac{\sqrt{3}}{2}\) ### Step 2: Substitute the values into the expression Now substitute these values into the expression: \[ \frac{\sin 30^\circ}{\cos 45^\circ} \times \frac{\sin 45^\circ}{\cos 30^\circ} = \frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}} \times \frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2}} \] ### Step 3: Simplify each fraction First, simplify \(\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}}\): \[ \frac{1}{2} \div \frac{1}{\sqrt{2}} = \frac{1}{2} \times \frac{\sqrt{2}}{1} = \frac{\sqrt{2}}{2} \] Next, simplify \(\frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2}}\): \[ \frac{1}{\sqrt{2}} \div \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{2}} \times \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{2} \cdot \sqrt{3}} = \frac{2}{\sqrt{6}} \] ### Step 4: Combine the results Now combine the two simplified results: \[ \frac{\sqrt{2}}{2} \times \frac{2}{\sqrt{6}} = \frac{\sqrt{2} \cdot 2}{2 \cdot \sqrt{6}} = \frac{\sqrt{2}}{\sqrt{6}} \] ### Step 5: Simplify the final result To simplify \(\frac{\sqrt{2}}{\sqrt{6}}\): \[ \frac{\sqrt{2}}{\sqrt{6}} = \frac{\sqrt{2}}{\sqrt{2 \cdot 3}} = \frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}} \] Thus, the final answer is: \[ \frac{1}{\sqrt{3}} \]
Promotional Banner