Home
Class 14
MATHS
Find the value of k in (26)/(21) : (24)/...

Find the value of k in `(26)/(21) : (24)/(9) :: k : (14)/(13)`

A

a.`(1)/(3)`

B

b.`2`

C

`c.(1)/(2)`

D

d.`3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) in the proportion \( \frac{26}{21} : \frac{24}{9} :: k : \frac{14}{13} \), we can set up the equation based on the property of proportions. ### Step-by-Step Solution: 1. **Set Up the Proportion**: We can express the proportion as: \[ \frac{26}{21} : \frac{24}{9} = k : \frac{14}{13} \] This can be rewritten as: \[ \frac{26}{21} \cdot \frac{14}{13} = \frac{24}{9} \cdot k \] 2. **Cross Multiply**: Cross multiplying gives us: \[ 26 \cdot 14 = 21 \cdot 24 \cdot k \] 3. **Calculate the Left Side**: Calculate \( 26 \cdot 14 \): \[ 26 \cdot 14 = 364 \] 4. **Calculate the Right Side**: Calculate \( 21 \cdot 24 \): \[ 21 \cdot 24 = 504 \] So we have: \[ 364 = 504 \cdot k \] 5. **Solve for \( k \)**: To find \( k \), divide both sides by 504: \[ k = \frac{364}{504} \] 6. **Simplify \( k \)**: We can simplify \( \frac{364}{504} \) by finding the greatest common divisor (GCD). The GCD of 364 and 504 is 252. Thus: \[ k = \frac{364 \div 252}{504 \div 252} = \frac{1.44}{2} = \frac{1}{2} \] ### Final Answer: Thus, the value of \( k \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner