Home
Class 14
MATHS
Simplify: (a^(-1) +b^(-1)) div (a^(-2)-b...

Simplify: `(a^(-1) +b^(-1)) div (a^(-2)-b^(-2))`

A

`(ab)/(b-a)`

B

`(a+b)/(ab)`

C

`(ab)/(a-b)`

D

`a/b`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((a^{-1} + b^{-1}) \div (a^{-2} - b^{-2})\), we can follow these steps: ### Step 1: Rewrite the expression using positive exponents We know that \(a^{-1} = \frac{1}{a}\) and \(b^{-1} = \frac{1}{b}\). Similarly, \(a^{-2} = \frac{1}{a^2}\) and \(b^{-2} = \frac{1}{b^2}\). Thus, we can rewrite the expression as: \[ \frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a^2} - \frac{1}{b^2}} \] ### Step 2: Simplify the numerator The numerator \(\frac{1}{a} + \frac{1}{b}\) can be combined using a common denominator: \[ \frac{1}{a} + \frac{1}{b} = \frac{b + a}{ab} \] ### Step 3: Simplify the denominator The denominator \(\frac{1}{a^2} - \frac{1}{b^2}\) can be factored as a difference of squares: \[ \frac{1}{a^2} - \frac{1}{b^2} = \frac{b^2 - a^2}{a^2b^2} = \frac{(b - a)(b + a)}{a^2b^2} \] ### Step 4: Substitute back into the expression Now substituting the simplified numerator and denominator back into the expression gives us: \[ \frac{\frac{b + a}{ab}}{\frac{(b - a)(b + a)}{a^2b^2}} \] ### Step 5: Simplify the overall fraction When dividing by a fraction, we multiply by its reciprocal: \[ \frac{b + a}{ab} \cdot \frac{a^2b^2}{(b - a)(b + a)} = \frac{(b + a) \cdot a^2b^2}{ab \cdot (b - a)(b + a)} \] The \((b + a)\) terms cancel out: \[ = \frac{a^2b}{b - a} \] ### Final Result Thus, the simplified expression is: \[ \frac{ab}{b - a} \]
Promotional Banner