Home
Class 14
MATHS
Solve : (1- tan^2 theta)/(tan^2 theta)...

Solve : `(1- tan^2 theta)/(tan^2 theta)`

A

`1- cot^2 theta`

B

2

C

0

D

`cot^2 theta -1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 - \tan^2 \theta) / \tan^2 \theta\), we can follow these steps: ### Step 1: Rewrite \(\tan^2 \theta\) We know that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), so \(\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\). ### Step 2: Substitute \(\tan^2 \theta\) in the expression Substituting \(\tan^2 \theta\) into the expression gives us: \[ \frac{1 - \tan^2 \theta}{\tan^2 \theta} = \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{\frac{\sin^2 \theta}{\cos^2 \theta}} \] ### Step 3: Simplify the numerator To simplify the numerator \(1 - \frac{\sin^2 \theta}{\cos^2 \theta}\), we can write \(1\) as \(\frac{\cos^2 \theta}{\cos^2 \theta}\): \[ 1 - \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} \] ### Step 4: Substitute back into the expression Now substituting back into the expression, we have: \[ \frac{\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta}}{\frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta - \sin^2 \theta}{\sin^2 \theta} \] ### Step 5: Separate the fractions We can separate the fractions: \[ \frac{\cos^2 \theta}{\sin^2 \theta} - \frac{\sin^2 \theta}{\sin^2 \theta} \] ### Step 6: Simplify the fractions This simplifies to: \[ \cot^2 \theta - 1 \] ### Final Answer Thus, the final result of the expression \((1 - \tan^2 \theta) / \tan^2 \theta\) is: \[ \cot^2 \theta - 1 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+ tan^4 theta)/(1+ tan^2 theta) = sec ^2 theta-2 sin^2theta

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

tan2 theta xx tan theta=1

tan2 theta tan theta=1

tan theta+(1)/(tan theta)=2 then prove that tan^(2)theta+(1)/(tan^(2)theta)=2

Prove: (1+tan^(2)theta)/(1+cot^(2)theta)=((1-tan theta)/(1-cot theta))^(2)=tan^(2)theta

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

If tan theta+(1)/(tan theta)=2, find the value of tan^(2)theta+(1)/(tan^(2)theta)

If tan theta=(1)/(sqrt(3)), then find the value of (2tan theta)/(1-tan^(2)theta)