Home
Class 14
MATHS
The volume (in cu.com) of a righe circul...

The volume (in cu.com) of a righe circular cylinder with radius 2.5 cm and height 2 cm is : ( Take `pi = (22)/(7)` )

A

275

B

`275//21`

C

`275//2`

D

`275//7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of a right circular cylinder, we use the formula: \[ V = \pi r^2 h \] where: - \( V \) is the volume, - \( r \) is the radius, - \( h \) is the height, and - \( \pi \) is a constant approximately equal to \( \frac{22}{7} \). ### Step 1: Identify the given values - Radius \( r = 2.5 \) cm - Height \( h = 2 \) cm - \( \pi = \frac{22}{7} \) ### Step 2: Calculate \( r^2 \) \[ r^2 = (2.5)^2 = 2.5 \times 2.5 = 6.25 \] ### Step 3: Substitute the values into the volume formula \[ V = \pi r^2 h = \frac{22}{7} \times 6.25 \times 2 \] ### Step 4: Calculate \( 6.25 \times 2 \) \[ 6.25 \times 2 = 12.5 \] ### Step 5: Substitute back into the volume formula \[ V = \frac{22}{7} \times 12.5 \] ### Step 6: Convert \( 12.5 \) to a fraction \[ 12.5 = \frac{125}{10} = \frac{25}{2} \] ### Step 7: Substitute \( 12.5 \) as a fraction into the volume formula \[ V = \frac{22}{7} \times \frac{25}{2} \] ### Step 8: Multiply the fractions \[ V = \frac{22 \times 25}{7 \times 2} = \frac{550}{14} \] ### Step 9: Simplify the fraction \[ \frac{550}{14} = \frac{275}{7} \] ### Step 10: Final volume in cubic centimeters Thus, the volume of the cylinder is: \[ V = \frac{275}{7} \text{ cm}^3 \] ### Summary of the solution: The volume of the right circular cylinder with radius 2.5 cm and height 2 cm is \( \frac{275}{7} \) cm³. ---
Promotional Banner