Home
Class 14
MATHS
If sin x =(4)/(5) then sec x + Tan x = ?...

If sin x =`(4)/(5)` then sec x + Tan x = ?

A

37/20

B

31/12

C

3

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin x = \frac{4}{5} \) and we need to find \( \sec x + \tan x \), we can follow these steps: ### Step 1: Understand the relationship of sine, cosine, and tangent We know that: - \( \sin x = \frac{\text{Opposite}}{\text{Hypotenuse}} \) - \( \cos x = \frac{\text{Adjacent}}{\text{Hypotenuse}} \) - \( \tan x = \frac{\text{Opposite}}{\text{Adjacent}} \) - \( \sec x = \frac{1}{\cos x} \) ### Step 2: Identify the sides of the triangle Given \( \sin x = \frac{4}{5} \): - Opposite side = 4 - Hypotenuse = 5 ### Step 3: Calculate the adjacent side using the Pythagorean theorem Using the Pythagorean theorem: \[ \text{Adjacent}^2 + \text{Opposite}^2 = \text{Hypotenuse}^2 \] Let the adjacent side be \( a \): \[ a^2 + 4^2 = 5^2 \] \[ a^2 + 16 = 25 \] \[ a^2 = 25 - 16 = 9 \] \[ a = \sqrt{9} = 3 \] ### Step 4: Calculate \( \sec x \) and \( \tan x \) Now we can find \( \sec x \) and \( \tan x \): - \( \sec x = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{5}{3} \) - \( \tan x = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{4}{3} \) ### Step 5: Add \( \sec x \) and \( \tan x \) Now we add \( \sec x \) and \( \tan x \): \[ \sec x + \tan x = \frac{5}{3} + \frac{4}{3} = \frac{5 + 4}{3} = \frac{9}{3} = 3 \] ### Final Answer Thus, \( \sec x + \tan x = 3 \). ---
Promotional Banner