Home
Class 14
MATHS
If a+ (1)/(a)= - sqrt3, find the value o...

If `a+ (1)/(a)= - sqrt3`, find the value of `a^(3) + (1)/(a^(3))`

A

0

B

`-6sqrt3`

C

`-3 sqrt3`

D

`6 sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + \frac{1}{a^3} \) given that \( a + \frac{1}{a} = -\sqrt{3} \). ### Step-by-step Solution: 1. **Given Equation**: We start with the equation: \[ a + \frac{1}{a} = -\sqrt{3} \] 2. **Use the Formula for Cubes**: We use the identity for cubes: \[ a^3 + \frac{1}{a^3} = \left( a + \frac{1}{a} \right) \left( a^2 + \frac{1}{a^2} \right) - \left( a \cdot \frac{1}{a} \right) \] Since \( a \cdot \frac{1}{a} = 1 \), we can rewrite it as: \[ a^3 + \frac{1}{a^3} = \left( a + \frac{1}{a} \right) \left( a^2 + \frac{1}{a^2} \right) - 1 \] 3. **Find \( a^2 + \frac{1}{a^2} \)**: To find \( a^2 + \frac{1}{a^2} \), we square \( a + \frac{1}{a} \): \[ \left( a + \frac{1}{a} \right)^2 = a^2 + 2 + \frac{1}{a^2} \] Therefore: \[ a^2 + \frac{1}{a^2} = \left( a + \frac{1}{a} \right)^2 - 2 \] Substituting \( a + \frac{1}{a} = -\sqrt{3} \): \[ a^2 + \frac{1}{a^2} = (-\sqrt{3})^2 - 2 = 3 - 2 = 1 \] 4. **Substitute Back into the Cubes Formula**: Now substitute \( a + \frac{1}{a} \) and \( a^2 + \frac{1}{a^2} \) back into the cubes formula: \[ a^3 + \frac{1}{a^3} = (-\sqrt{3})(1) - 1 = -\sqrt{3} - 1 \] 5. **Final Answer**: Thus, the value of \( a^3 + \frac{1}{a^3} \) is: \[ a^3 + \frac{1}{a^3} = -\sqrt{3} - 1 \] ### Summary: The value of \( a^3 + \frac{1}{a^3} \) is \( -\sqrt{3} - 1 \).
Promotional Banner