Home
Class 14
MATHS
If 8 sec^(2)x- 7 tan^(2)x= 11 and 0^(@) ...

If `8 sec^(2)x- 7 tan^(2)x= 11 and 0^(@) le x le 90^(@)`, then x= ?

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8 \sec^2 x - 7 \tan^2 x = 11 \) for \( 0^\circ \leq x \leq 90^\circ \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 8 \sec^2 x - 7 \tan^2 x = 11 \] ### Step 2: Use the identity Recall the trigonometric identity: \[ \sec^2 x = 1 + \tan^2 x \] Substituting this identity into the equation gives: \[ 8(1 + \tan^2 x) - 7 \tan^2 x = 11 \] ### Step 3: Simplify the equation Expanding the equation: \[ 8 + 8 \tan^2 x - 7 \tan^2 x = 11 \] This simplifies to: \[ 8 + \tan^2 x = 11 \] ### Step 4: Isolate \(\tan^2 x\) Subtract 8 from both sides: \[ \tan^2 x = 11 - 8 \] Thus: \[ \tan^2 x = 3 \] ### Step 5: Solve for \(\tan x\) Taking the square root of both sides: \[ \tan x = \sqrt{3} \] ### Step 6: Find the angle \(x\) The angle \(x\) for which \(\tan x = \sqrt{3}\) in the range \(0^\circ \leq x \leq 90^\circ\) is: \[ x = 60^\circ \] ### Final Answer Thus, the solution to the equation is: \[ \boxed{60^\circ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3sec^(2)x - 2tan^(2)x = 6 and 0^(@) le x le 90^(@) then x = ?

If 2cos^(2)x- sin^(2)x= -0.25 and 0^(@) le x lt 90^(@) , then x= ?

If 10 sec^(2)x - 9tan^(2)x= 13 and 0^@le x lt 90^@ then x = _____

2sec^2x-tan^2x=5and 0^@ le xle 90^@ then x=?

8sec^2x-7tan^2x=11 for 0^@leqxleq90^@

If sin x = (3)/(5), 0 le x le 90^(@) , then the value of cot x.sec x is :

If a le tan^(-1) ((1-x)/(1+x)) le b " where " 0 le x le 1", then " (a, b) =