Home
Class 14
MATHS
Prove that cot^4 theta+ cot^2 theta= cos...

Prove that `cot^4 theta+ cot^2 theta=` `cosec^4 theta-cosec^2 theta`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \cot^4 \theta + \cot^2 \theta = \csc^4 \theta - \csc^2 \theta \), we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Start with the LHS We begin with the left-hand side: \[ \text{LHS} = \cot^4 \theta + \cot^2 \theta \] ### Step 2: Factor out \( \cot^2 \theta \) We can factor out \( \cot^2 \theta \) from the expression: \[ \text{LHS} = \cot^2 \theta (\cot^2 \theta + 1) \] ### Step 3: Use the identity for \( \cot^2 \theta + 1 \) Using the trigonometric identity \( \cot^2 \theta + 1 = \csc^2 \theta \), we can substitute: \[ \text{LHS} = \cot^2 \theta \cdot \csc^2 \theta \] ### Step 4: Rewrite \( \cot^2 \theta \) in terms of \( \csc^2 \theta \) We know that \( \cot^2 \theta = \csc^2 \theta - 1 \). Therefore, we can substitute \( \cot^2 \theta \): \[ \text{LHS} = (\csc^2 \theta - 1) \cdot \csc^2 \theta \] ### Step 5: Expand the expression Now, we expand the expression: \[ \text{LHS} = \csc^4 \theta - \csc^2 \theta \] ### Step 6: Conclude that LHS equals RHS Thus, we have shown that: \[ \text{LHS} = \csc^4 \theta - \csc^2 \theta = \text{RHS} \] ### Final Result We have proved that: \[ \cot^4 \theta + \cot^2 \theta = \csc^4 \theta - \csc^2 \theta \]
Promotional Banner