Home
Class 14
MATHS
IF x+y=1 then x^3+y^3+3xy-1=...

IF x+y=1 then `x^3+y^3+3xy-1`=

A

0

B

5

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^3 + y^3 + 3xy - 1 \) given that \( x + y = 1 \), we can follow these steps: ### Step 1: Use the identity for the sum of cubes We know from algebra that: \[ x^3 + y^3 = (x+y)(x^2 - xy + y^2) \] Since we have \( x + y = 1 \), we can substitute this into the equation. ### Step 2: Substitute \( x + y \) Substituting \( x + y = 1 \) into the identity gives: \[ x^3 + y^3 = 1 \cdot (x^2 - xy + y^2) = x^2 - xy + y^2 \] ### Step 3: Express \( x^2 + y^2 \) We can express \( x^2 + y^2 \) in terms of \( (x+y)^2 \): \[ x^2 + y^2 = (x+y)^2 - 2xy = 1^2 - 2xy = 1 - 2xy \] Thus, we can rewrite \( x^3 + y^3 \): \[ x^3 + y^3 = (1 - 2xy) - xy = 1 - 3xy \] ### Step 4: Substitute back into the original expression Now we substitute \( x^3 + y^3 \) back into the original expression: \[ x^3 + y^3 + 3xy - 1 = (1 - 3xy) + 3xy - 1 \] ### Step 5: Simplify the expression Now simplify the expression: \[ (1 - 3xy + 3xy - 1) = 0 \] ### Conclusion Thus, the value of \( x^3 + y^3 + 3xy - 1 \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2,y=1 then x^(4)+2x^(3)y-2xy^(3)-y^(4) is equal to

If x^2 -3x + 1 =0 , and xy = 1 then find the value of x^3-y^3 +3xy

If x-y= -1 , then find the value of x^3 - y^3 +3xy

If x - y = 1 , then the value of x^3 - y^3 - 3xy will be :

If (x + y) ^(2) = xy +1 and x ^(3) -y ^(3) = 1, what is the value of (x-y) ?