Home
Class 14
MATHS
Simplify the following expression 7 sq...

Simplify the following expression
`7 sqrt48 +7 sqrt(147)`

A

`76 sqrt3`

B

`77 sqrt7`

C

`77sqrt3`

D

`76 sqrt7`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 7 \sqrt{48} + 7 \sqrt{147} \), we can follow these steps: ### Step 1: Factor out the common term The expression can be factored by taking out the common factor of \( 7 \): \[ 7 \sqrt{48} + 7 \sqrt{147} = 7 (\sqrt{48} + \sqrt{147}) \] **Hint:** Look for common factors in the terms to simplify the expression. ### Step 2: Simplify each square root Now, we simplify \( \sqrt{48} \) and \( \sqrt{147} \) separately. **For \( \sqrt{48} \):** \[ \sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3} \] **For \( \sqrt{147} \):** \[ \sqrt{147} = \sqrt{49 \times 3} = \sqrt{49} \times \sqrt{3} = 7\sqrt{3} \] **Hint:** Factor the numbers under the square root to find perfect squares. ### Step 3: Substitute back into the expression Now substitute the simplified square roots back into the expression: \[ 7 (\sqrt{48} + \sqrt{147}) = 7 (4\sqrt{3} + 7\sqrt{3}) \] ### Step 4: Combine like terms Combine the terms inside the parentheses: \[ 4\sqrt{3} + 7\sqrt{3} = (4 + 7)\sqrt{3} = 11\sqrt{3} \] ### Step 5: Final multiplication Now, multiply by the factor we took out earlier: \[ 7 (11\sqrt{3}) = 77\sqrt{3} \] ### Final Answer: Thus, the simplified expression is: \[ \boxed{77\sqrt{3}} \]
Promotional Banner