Home
Class 14
MATHS
In a triangle angleB=90^(@) and angleA=3...

In a triangle `angleB=90^(@)` and `angleA=30^(@)` then `Sin^(2)A-Cos^(2)A+Tan^(2)A` :

A

`(-3)/(12)`

B

`1/6`

C

`2/6`

D

`(-1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \( \sin^2 A - \cos^2 A + \tan^2 A \) for the given angles in the triangle. ### Step-by-Step Solution: 1. **Identify the angles**: We know that in the triangle, \( \angle B = 90^\circ \) and \( \angle A = 30^\circ \). Therefore, \( \angle C = 90^\circ - 30^\circ = 60^\circ \). 2. **Calculate \( \sin^2 A \)**: \[ \sin A = \sin 30^\circ = \frac{1}{2} \] \[ \sin^2 A = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \] 3. **Calculate \( \cos^2 A \)**: \[ \cos A = \cos 30^\circ = \frac{\sqrt{3}}{2} \] \[ \cos^2 A = \left( \frac{\sqrt{3}}{2} \right)^2 = \frac{3}{4} \] 4. **Calculate \( \tan^2 A \)**: \[ \tan A = \tan 30^\circ = \frac{1}{\sqrt{3}} \] \[ \tan^2 A = \left( \frac{1}{\sqrt{3}} \right)^2 = \frac{1}{3} \] 5. **Substitute values into the expression**: \[ \sin^2 A - \cos^2 A + \tan^2 A = \frac{1}{4} - \frac{3}{4} + \frac{1}{3} \] 6. **Combine the fractions**: - The common denominator for \( \frac{1}{4} \), \( \frac{3}{4} \), and \( \frac{1}{3} \) is 12. - Convert each fraction: \[ \frac{1}{4} = \frac{3}{12}, \quad \frac{3}{4} = \frac{9}{12}, \quad \frac{1}{3} = \frac{4}{12} \] - Substitute back: \[ \frac{3}{12} - \frac{9}{12} + \frac{4}{12} = \frac{3 - 9 + 4}{12} = \frac{-2}{12} \] 7. **Simplify the result**: \[ \frac{-2}{12} = \frac{-1}{6} \] ### Final Answer: Thus, the value of \( \sin^2 A - \cos^2 A + \tan^2 A \) is \( \frac{-1}{6} \).
Promotional Banner