Home
Class 14
MATHS
If x^(2)+y^(2)=156 and x-y=12, then xy=?...

If `x^(2)+y^(2)=156` and `x-y=12`, then `xy=?`

A

8

B

13

C

11

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations: 1. \( x^2 + y^2 = 156 \) 2. \( x - y = 12 \) We need to find the value of \( xy \). ### Step 1: Express \( x \) in terms of \( y \) From the second equation, we can express \( x \) in terms of \( y \): \[ x = y + 12 \] ### Step 2: Substitute \( x \) in the first equation Now, we substitute \( x \) in the first equation: \[ (y + 12)^2 + y^2 = 156 \] ### Step 3: Expand the equation Expanding the left-hand side: \[ (y^2 + 24y + 144) + y^2 = 156 \] ### Step 4: Combine like terms Combine the \( y^2 \) terms: \[ 2y^2 + 24y + 144 = 156 \] ### Step 5: Rearrange the equation Now, we rearrange the equation to set it to zero: \[ 2y^2 + 24y + 144 - 156 = 0 \] \[ 2y^2 + 24y - 12 = 0 \] ### Step 6: Simplify the equation We can simplify the equation by dividing all terms by 2: \[ y^2 + 12y - 6 = 0 \] ### Step 7: Use the quadratic formula Now, we can use the quadratic formula to find \( y \): \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 12 \), and \( c = -6 \): \[ y = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} \] \[ y = \frac{-12 \pm \sqrt{144 + 24}}{2} \] \[ y = \frac{-12 \pm \sqrt{168}}{2} \] \[ y = \frac{-12 \pm 2\sqrt{42}}{2} \] \[ y = -6 \pm \sqrt{42} \] ### Step 8: Find \( x \) Now we can find \( x \): \[ x = y + 12 = (-6 \pm \sqrt{42}) + 12 = 6 \pm \sqrt{42} \] ### Step 9: Calculate \( xy \) Now we can find \( xy \): \[ xy = x \cdot y = (6 + \sqrt{42})(-6 + \sqrt{42}) \text{ or } (6 - \sqrt{42})(-6 - \sqrt{42}) \] Using the difference of squares: \[ xy = (6^2 - (\sqrt{42})^2) = 36 - 42 = -6 \] ### Final Answer Thus, the value of \( xy \) is: \[ \boxed{-6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=25, xy=12 then x=

If x^2+y^2 = 25 and xy = 12, then the value of x^(-1)+y^(-1) is :

If x^(2) + y^(2) -3xy = 0 and x gt y then find the value of log_(xy)(x-y) .

x-x^(2)y+xy^(2)-y

If x^(2) + y^(2) = 12 xy , then find the value of (x^(2))/(y^(2)) + (y^(2))/(x^(2)) .