Home
Class 14
MATHS
Find the value of tan8^(@)tan22^(@)cot60...

Find the value of `tan8^(@)tan22^(@)cot60^(@)tan68^(@)tan82^(@)`

A

`sqrt(3)`

B

1

C

`(2)/(sqrt(3))`

D

`(1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 8^\circ \tan 22^\circ \cot 60^\circ \tan 68^\circ \tan 82^\circ \), we can use the properties of trigonometric functions. ### Step 1: Rewrite cotangent We know that: \[ \cot 60^\circ = \frac{1}{\tan 60^\circ} \] Since \( \tan 60^\circ = \sqrt{3} \), we have: \[ \cot 60^\circ = \frac{1}{\sqrt{3}} \] ### Step 2: Use the complementary angle identities Using the identity \( \tan(90^\circ - \theta) = \cot \theta \), we can rewrite some of the terms: \[ \tan 68^\circ = \cot 22^\circ \quad \text{and} \quad \tan 82^\circ = \cot 8^\circ \] ### Step 3: Substitute the values Now we can substitute these identities into our expression: \[ \tan 8^\circ \tan 22^\circ \cot 60^\circ \tan 68^\circ \tan 82^\circ = \tan 8^\circ \tan 22^\circ \cdot \frac{1}{\sqrt{3}} \cdot \cot 22^\circ \cdot \cot 8^\circ \] ### Step 4: Simplify the expression Now, we can simplify: \[ \tan 8^\circ \cot 8^\circ = 1 \quad \text{and} \quad \tan 22^\circ \cot 22^\circ = 1 \] Thus, the expression simplifies to: \[ 1 \cdot 1 \cdot \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] ### Final Answer Therefore, the value of \( \tan 8^\circ \tan 22^\circ \cot 60^\circ \tan 68^\circ \tan 82^\circ \) is: \[ \frac{1}{\sqrt{3}} \] ### Options From the options provided, the correct answer is option D: \( \frac{1}{\sqrt{3}} \). ---
Promotional Banner