Home
Class 14
MATHS
The value of sqrt((3sqrt(9)-3sqrt(8))(9+...

The value of `sqrt((3sqrt(9)-3sqrt(8))(9+2sqrt(18)))` is :

A

3

B

4

C

2

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{(3\sqrt{9} - 3\sqrt{8})(9 + 2\sqrt{18})} \), we will break it down step by step. ### Step 1: Simplify \( 3\sqrt{9} \) and \( 3\sqrt{8} \) First, we calculate \( 3\sqrt{9} \) and \( 3\sqrt{8} \): - \( \sqrt{9} = 3 \) so \( 3\sqrt{9} = 3 \times 3 = 9 \) - \( \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} \) so \( 3\sqrt{8} = 3 \times 2\sqrt{2} = 6\sqrt{2} \) Thus, we have: \[ 3\sqrt{9} - 3\sqrt{8} = 9 - 6\sqrt{2} \] ### Step 2: Simplify \( 9 + 2\sqrt{18} \) Next, we simplify \( 2\sqrt{18} \): - \( \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} \) so \( 2\sqrt{18} = 2 \times 3\sqrt{2} = 6\sqrt{2} \) Thus, we have: \[ 9 + 2\sqrt{18} = 9 + 6\sqrt{2} \] ### Step 3: Substitute back into the expression Now substituting back into the original expression: \[ \sqrt{(9 - 6\sqrt{2})(9 + 6\sqrt{2})} \] ### Step 4: Apply the difference of squares formula Using the difference of squares formula \( (a - b)(a + b) = a^2 - b^2 \): - Here, \( a = 9 \) and \( b = 6\sqrt{2} \) Calculating: \[ (9 - 6\sqrt{2})(9 + 6\sqrt{2}) = 9^2 - (6\sqrt{2})^2 \] \[ = 81 - (36 \times 2) = 81 - 72 = 9 \] ### Step 5: Take the square root Now we take the square root of the result: \[ \sqrt{9} = 3 \] ### Final Answer Thus, the value of \( \sqrt{(3\sqrt{9} - 3\sqrt{8})(9 + 2\sqrt{18})} \) is \( 3 \). ---
Promotional Banner