Home
Class 14
MATHS
Choose one of the following options whic...

Choose one of the following options which is equal to:
`(1+costheta)/(sintheta)`

A

`(sintheta)/(1-costheta)`

B

`(1+sin^(2)theta)/(sintheta costheta)`

C

`(1+2costheta)/(sintheta costheta)`

D

`(1-2sin^(2)theta)/(costheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \cos \theta) / \sin \theta\), we can simplify it step by step. ### Step 1: Multiply by the Conjugate We start with the expression: \[ \frac{1 + \cos \theta}{\sin \theta} \] To simplify this, we can multiply both the numerator and the denominator by the conjugate of the numerator, which is \(1 - \cos \theta\): \[ \frac{(1 + \cos \theta)(1 - \cos \theta)}{\sin \theta(1 - \cos \theta)} \] ### Step 2: Apply the Difference of Squares Using the difference of squares formula \(a^2 - b^2\), we simplify the numerator: \[ (1 + \cos \theta)(1 - \cos \theta) = 1^2 - \cos^2 \theta = 1 - \cos^2 \theta \] Thus, our expression now looks like: \[ \frac{1 - \cos^2 \theta}{\sin \theta(1 - \cos \theta)} \] ### Step 3: Use the Pythagorean Identity According to the Pythagorean identity, we know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \implies 1 - \cos^2 \theta = \sin^2 \theta \] Substituting this into our expression gives: \[ \frac{\sin^2 \theta}{\sin \theta(1 - \cos \theta)} \] ### Step 4: Simplify the Expression Now, we can simplify the expression: \[ \frac{\sin^2 \theta}{\sin \theta(1 - \cos \theta)} = \frac{\sin \theta}{1 - \cos \theta} \] ### Final Result Thus, the simplified form of the given expression \((1 + \cos \theta) / \sin \theta\) is: \[ \frac{\sin \theta}{1 - \cos \theta} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify (1-costheta)/sintheta

Choose the correct answer from the following : The value of |{:(-costheta,sintheta),(-sintheta,-costheta):}| is:

If sintheta=a/b , then costheta is equal to

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

If costheta+sintheta=sqrt(2)costheta ,then find the value of (costheta-sintheta)/(sintheta) .

If (1+ sintheta-costheta)/(1+ sintheta + costheta)+(1+sintheta+costheta)/(1+sintheta-costheta)= 4 , then which of the following values will be suitable for theta ?

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

What is sintheta/(1+costheta)+(1+costheta)/sintheta equal to ?

Evaluate : 1/costheta + sintheta/costheta = ?

Show that every real orthogonal matrix is of any one of the forms {:[(costheta,-sintheta),(sintheta,costheta)]:}or{:[(costheta,sintheta),(sintheta,-costheta)]:}