Home
Class 14
MATHS
If a-(1)/(a)=7, then a^(2)+(1)/(a^(2))=?...

If `a-(1)/(a)=7`, then `a^(2)+(1)/(a^(2))=`?

A

54

B

51

C

53

D

52

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a - \frac{1}{a} = 7 \) and find the value of \( a^2 + \frac{1}{a^2} \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ a - \frac{1}{a} = 7 \] Now, we square both sides: \[ \left(a - \frac{1}{a}\right)^2 = 7^2 \] This simplifies to: \[ a^2 - 2a \cdot \frac{1}{a} + \frac{1}{a^2} = 49 \] ### Step 2: Simplify the equation The term \( -2a \cdot \frac{1}{a} \) simplifies to \( -2 \): \[ a^2 - 2 + \frac{1}{a^2} = 49 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( a^2 + \frac{1}{a^2} \): \[ a^2 + \frac{1}{a^2} = 49 + 2 \] This simplifies to: \[ a^2 + \frac{1}{a^2} = 51 \] ### Final Answer Thus, the value of \( a^2 + \frac{1}{a^2} \) is: \[ \boxed{51} \]
Promotional Banner