Home
Class 14
MATHS
The square root of 73 ^(2) - 55 ^(2) is...

The square root of `73 ^(2) - 55 ^(2)` is :

A

42

B

48

C

18

D

52

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square root of \(73^2 - 55^2\). We can use the difference of squares formula, which states that \(a^2 - b^2 = (a - b)(a + b)\). ### Step-by-Step Solution: 1. **Identify the values**: Here, \(a = 73\) and \(b = 55\). 2. **Apply the difference of squares formula**: \[ 73^2 - 55^2 = (73 - 55)(73 + 55) \] 3. **Calculate \(73 - 55\)**: \[ 73 - 55 = 18 \] 4. **Calculate \(73 + 55\)**: \[ 73 + 55 = 128 \] 5. **Substitute back into the formula**: \[ 73^2 - 55^2 = 18 \times 128 \] 6. **Calculate \(18 \times 128\)**: - Break it down: \[ 18 \times 128 = 18 \times (100 + 28) = 18 \times 100 + 18 \times 28 \] - Calculate each part: \[ 18 \times 100 = 1800 \] \[ 18 \times 28 = 504 \quad (\text{since } 18 \times 20 + 18 \times 8 = 360 + 144) \] - Add them together: \[ 1800 + 504 = 2304 \] 7. **Find the square root of \(2304\)**: - We can check for perfect squares or use prime factorization. - Alternatively, we can estimate: - \(48 \times 48 = 2304\) (since \(48^2 = 2304\)) 8. **Final Answer**: \[ \sqrt{73^2 - 55^2} = \sqrt{2304} = 48 \] ### Final Answer: The square root of \(73^2 - 55^2\) is \(48\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The square root of 4ab-2i(a^(2)-b^(2))

1.The square root of 73.96 is (1)

The square root of y^(2) + (1)/(y^(2)) + 2 is

the square root of x+sqrt(x^(2)-y^(2))

Find the square root of a^(2) x^(2) - 2ayx^(2) + x^(2) y^(2)

Find the square root of x^(2) + 12xy + 36y^(2)

The square root of a^(m^(2)).b^(n^(2)) is ___