Home
Class 14
MATHS
cot ^(2) A - cos ^(2) A is equal to :...

`cot ^(2) A - cos ^(2) A ` is equal to :

A

`cos ^(2) A - tan ^(2) A`

B

`cot^(2) A`

C

`cos ^(2) A cot ^(2) A`

D

`cos ^(2) A sec ^(2) A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cot^2 A - \cos^2 A \), we can follow these steps: ### Step 1: Rewrite \( \cot^2 A \) We know that: \[ \cot A = \frac{\cos A}{\sin A} \] Thus, \[ \cot^2 A = \frac{\cos^2 A}{\sin^2 A} \] ### Step 2: Substitute \( \cot^2 A \) into the expression Now we substitute \( \cot^2 A \) into the original expression: \[ \cot^2 A - \cos^2 A = \frac{\cos^2 A}{\sin^2 A} - \cos^2 A \] ### Step 3: Find a common denominator To combine the terms, we need a common denominator, which is \( \sin^2 A \): \[ \frac{\cos^2 A}{\sin^2 A} - \cos^2 A = \frac{\cos^2 A}{\sin^2 A} - \frac{\cos^2 A \sin^2 A}{\sin^2 A} \] This simplifies to: \[ \frac{\cos^2 A - \cos^2 A \sin^2 A}{\sin^2 A} \] ### Step 4: Factor out \( \cos^2 A \) Now we can factor \( \cos^2 A \) from the numerator: \[ \frac{\cos^2 A (1 - \sin^2 A)}{\sin^2 A} \] ### Step 5: Use the Pythagorean identity We know from the Pythagorean identity that: \[ 1 - \sin^2 A = \cos^2 A \] Substituting this into our expression gives: \[ \frac{\cos^2 A \cdot \cos^2 A}{\sin^2 A} = \frac{\cos^4 A}{\sin^2 A} \] ### Final Result Thus, the expression \( \cot^2 A - \cos^2 A \) simplifies to: \[ \frac{\cos^4 A}{\sin^2 A} \] ---
Promotional Banner