Home
Class 14
MATHS
If tan alpha = sqrt3+2, then the value o...

If `tan alpha = sqrt3+2`, then the value of `tan alpha - cot alpha` is

A

2

B

`2sqrt3`

C

`sqrt3-2`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan \alpha - \cot \alpha \) given that \( \tan \alpha = \sqrt{3} + 2 \). ### Step-by-step Solution: 1. **Identify the given value**: \[ \tan \alpha = \sqrt{3} + 2 \] 2. **Calculate \( \cot \alpha \)**: \[ \cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{\sqrt{3} + 2} \] 3. **Rationalize the denominator of \( \cot \alpha \)**: To rationalize, multiply the numerator and denominator by the conjugate of the denominator: \[ \cot \alpha = \frac{1}{\sqrt{3} + 2} \cdot \frac{\sqrt{3} - 2}{\sqrt{3} - 2} = \frac{\sqrt{3} - 2}{(\sqrt{3} + 2)(\sqrt{3} - 2)} \] 4. **Calculate the denominator using the difference of squares**: \[ (\sqrt{3} + 2)(\sqrt{3} - 2) = (\sqrt{3})^2 - (2)^2 = 3 - 4 = -1 \] So, we have: \[ \cot \alpha = \frac{\sqrt{3} - 2}{-1} = 2 - \sqrt{3} \] 5. **Now calculate \( \tan \alpha - \cot \alpha \)**: \[ \tan \alpha - \cot \alpha = (\sqrt{3} + 2) - (2 - \sqrt{3}) \] Simplifying this: \[ = \sqrt{3} + 2 - 2 + \sqrt{3} = 2\sqrt{3} \] 6. **Final result**: \[ \tan \alpha - \cot \alpha = 2\sqrt{3} \] ### Conclusion: The value of \( \tan \alpha - \cot \alpha \) is \( 2\sqrt{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If tan alpha = sqrt2 + 1 , the value of tan alpha- cot alpha is:

If tan alpha+cot alpha=a, then the value of tan^(4)alpha+cot^(4)alpha is equal to

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

If tan alpha+cot alpha=2 then

If tan alpha +cot alpha =a then the value of tan^(4) alpha +cot^(4) alpha=

If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta + alpha) + 2 tan alpha is