Home
Class 14
MATHS
If a is positive and a^2 + (1)/(a^2) = 7...

If a is positive and `a^2 + (1)/(a^2) = 7`, then `a^3 + (1)/(a^3)` =

A

21

B

`3sqrt7`

C

18

D

`7sqrt7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + \frac{1}{a^3} \) given that \( a^2 + \frac{1}{a^2} = 7 \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a^2 + \frac{1}{a^2} = 7 \] 2. **Add 2 to both sides:** \[ a^2 + \frac{1}{a^2} + 2 = 7 + 2 \] This simplifies to: \[ a^2 + 2 + \frac{1}{a^2} = 9 \] 3. **Recognize the left side as a perfect square:** \[ \left(a + \frac{1}{a}\right)^2 = 9 \] 4. **Take the square root of both sides:** \[ a + \frac{1}{a} = \sqrt{9} \] Since \( a \) is positive, we only consider the positive root: \[ a + \frac{1}{a} = 3 \] 5. **Now, we need to find \( a^3 + \frac{1}{a^3} \). Use the identity:** \[ a^3 + \frac{1}{a^3} = \left(a + \frac{1}{a}\right)^3 - 3\left(a + \frac{1}{a}\right) \] 6. **Substituting \( a + \frac{1}{a} = 3 \) into the identity:** \[ a^3 + \frac{1}{a^3} = 3^3 - 3 \cdot 3 \] Calculate \( 3^3 \): \[ 3^3 = 27 \] Now calculate \( 3 \cdot 3 \): \[ 3 \cdot 3 = 9 \] 7. **Combine the results:** \[ a^3 + \frac{1}{a^3} = 27 - 9 = 18 \] ### Final Answer: \[ a^3 + \frac{1}{a^3} = 18 \]
Promotional Banner