Home
Class 14
MATHS
2 cos (theta - pi //2) + 3 sin (theta + ...

`2 cos (theta - pi //2) + 3 sin (theta + pi//2) - (3sin theta + 2 cos theta ) = `?
A. `cos theta - sin theta `
B. `sin theta - cos theta`
C. `sin theta + cos theta`
D. `cot theta - tan theta` .

A

B

B

D

C

C

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \cos(\theta - \frac{\pi}{2}) + 3 \sin(\theta + \frac{\pi}{2}) - (3 \sin \theta + 2 \cos \theta) = ? \), we can simplify the left-hand side step by step. ### Step 1: Simplify \( \cos(\theta - \frac{\pi}{2}) \) and \( \sin(\theta + \frac{\pi}{2}) \) Using the trigonometric identities: - \( \cos(\theta - \frac{\pi}{2}) = \sin \theta \) - \( \sin(\theta + \frac{\pi}{2}) = \cos \theta \) We rewrite the equation: \[ 2 \cos(\theta - \frac{\pi}{2}) = 2 \sin \theta \] \[ 3 \sin(\theta + \frac{\pi}{2}) = 3 \cos \theta \] So the equation becomes: \[ 2 \sin \theta + 3 \cos \theta - (3 \sin \theta + 2 \cos \theta) \] ### Step 2: Distribute the negative sign Now, distribute the negative sign across the terms in the parentheses: \[ 2 \sin \theta + 3 \cos \theta - 3 \sin \theta - 2 \cos \theta \] ### Step 3: Combine like terms Now combine the like terms: - For \( \sin \theta \): \[ 2 \sin \theta - 3 \sin \theta = -1 \sin \theta = -\sin \theta \] - For \( \cos \theta \): \[ 3 \cos \theta - 2 \cos \theta = 1 \cos \theta = \cos \theta \] Putting it all together, we have: \[ -\sin \theta + \cos \theta = \cos \theta - \sin \theta \] ### Final Result Thus, the final simplified expression is: \[ \cos \theta - \sin \theta \] ### Conclusion The correct answer is option **A: \( \cos \theta - \sin \theta \)**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(sin5 theta-2sin3 theta + sin theta) / (cos5 theta-cos theta) = tan theta

4 sin theta * cos^(3) theta-4 cos theta * sin ^(3)theta= A) 4 cos theta B) cos 4 theta C) 4 sin theta D) sin 4 theta

int cos2 theta * ln ((cos theta + sin theta) / (cos theta-sin theta)) d theta

8 sin theta * cos theta * cos 2 theta * cos 4 theta = A) sin 4 theta B) sin 8 theta C) sin 16 theta D) cos 8 theta

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

Prove that: (sin theta - 2 sin^(3) theta) = (2cos^(3) theta - cos theta) tan theta .