Home
Class 14
MATHS
If cot 52^(@) = b, tan 38^(@) = ? A.s...

If `cot 52^(@) = b, tan 38^(@) = ? `
A.`sqrt(b)`
B. `sqrt(b)//2`
C . `- b`
D. b

A

C

B

D

C

B

D

A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan 38^\circ \) given that \( \cot 52^\circ = b \). ### Step-by-Step Solution: 1. **Understanding the Relationship Between Cotangent and Tangent**: We know that: \[ \cot \theta = \frac{1}{\tan \theta} \] Therefore, if \( \cot 52^\circ = b \), we can express this in terms of tangent: \[ b = \cot 52^\circ = \frac{1}{\tan 52^\circ} \] 2. **Using the Complementary Angle Identity**: We also know the trigonometric identity: \[ \tan(90^\circ - \theta) = \cot \theta \] Applying this to our case: \[ \tan(90^\circ - 52^\circ) = \tan 38^\circ \] Thus: \[ \tan 38^\circ = \cot 52^\circ \] 3. **Substituting the Value of b**: Since we established that \( \tan 38^\circ = \cot 52^\circ \) and \( \cot 52^\circ = b \), we can substitute: \[ \tan 38^\circ = b \] 4. **Conclusion**: Therefore, the value of \( \tan 38^\circ \) is equal to \( b \). ### Final Answer: The answer is \( D. b \).
Promotional Banner

Similar Questions

Explore conceptually related problems

(a+c sqrt(b))(2+y sqrt(b))

If sqrt(a + b) tan = theta/2 = sqrt(a -b) tan phi/2 then prove that a + b cos phi = (a cos phi+ b) sec theta .

If : asec^(2) theta - b * tan^(2) theta = c,"then" = sin theta = A) sqrt((a +c)/(b + c) B) sqrt((a -c)/(b - c) C) sqrt((a -c)/(b + c) D) sqrt((a + c)/(b - c)

If : a = tan x, b = tan y , c=sqrt(1+a^(2)),d= sqrt(1+b^(2)), "then" : cd * sin (x+y)= A) a-b B) a+b C) c-d D) c+d

If cos theta = (a cos phi + b) / (a + b cos phi) then (tan ((theta) / (2))) / (tan ((phi) / (2))) = (A) ( ab) / (a + b) (B) (a + b) / (ab) (C) sqrt ((a + b) / (ab)) (D) sqrt ((ab) / (a + b))

If a=sqrt(2-sqrt(3) & b=sqrt(2+sqrt(3)) ,then (A) a+b=sqrt(6) (B) a-b=sqrt(2) (C) a+b=-sqrt(6) (D) a-b=-sqrt(2)

If (1-tan^(2)36^(@))/(2)=sqrt(a)-sqrt(b) ,then the value of (a+b) is equal to (a,b in N) (A)5 (B) 9 (C) 7 (D)None of these

Let a,b,c,d,A,B,C,D in R . If A/a = B/b = C/c = D/d then (sqrt(Aa) + sqrt(Bb) + sqrt(Cc) + sqrt(Dd)) / (sqrt(a+b+c+d) sqrt(A+B+C+D))=

The distance of the point P(a ,\ b ,\ c) from the x-axis is a. sqrt(b^2+c^2) b. sqrt(a^2+c^2) c. sqrt(a^2+b^2) d. none of these