Home
Class 14
MATHS
If (a+b+c)=6 and a^(2) +b^(2)+c^(2)=14, ...

If `(a+b+c)=6 and a^(2) +b^(2)+c^(2)=14`, then `(ab+bc+ca)=`?
A. 22
B. 11
C. 33
D. 44

A

B

B

D

C

A

D

C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ab + bc + ca \) given that \( a + b + c = 6 \) and \( a^2 + b^2 + c^2 = 14 \). ### Step-by-step Solution: 1. **Use the identity for the square of a sum**: The formula for the square of a sum is: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] 2. **Substitute the known values**: We know that \( a + b + c = 6 \) and \( a^2 + b^2 + c^2 = 14 \). Plugging these values into the formula gives: \[ (6)^2 = 14 + 2(ab + bc + ca) \] 3. **Calculate \( (6)^2 \)**: \[ 36 = 14 + 2(ab + bc + ca) \] 4. **Rearrange the equation**: To isolate \( 2(ab + bc + ca) \), subtract 14 from both sides: \[ 36 - 14 = 2(ab + bc + ca) \] \[ 22 = 2(ab + bc + ca) \] 5. **Solve for \( ab + bc + ca \)**: Divide both sides by 2: \[ ab + bc + ca = \frac{22}{2} = 11 \] ### Final Answer: Thus, the value of \( ab + bc + ca \) is \( 11 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=6 and a^(2)+b^(2)+c^(2)=60 , then find ab+bc+ca

If a+b+c=14anda^(2)+b^(2)+c^(2)=96 then (ab+bc+ca)=?

If a+b+c=6, a^(2) +b^(2)+ c^(2)=16 , find ab+bc +ca = ?

If a+b+c=5, a^(2)+b^(2)+c^(2)=6 then ab+bc+ca=?

If a+b+c=6, a^(2)+b^(2)+c^(2)=26 , then ab+bc+ca is equal to

If a +b+c=6 , a^2 +b^2 +c^2 = 14 find the value of bc + ca +ab .

If a^(2)+b^(2)+c^(2)=1, then the range of ab+bc+ca is

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then (a) ab+bc+ca=(1)/(2)( b) ab+bc+ca=(1)/(2)( c) a^(4)+b^(2)+c^(4)=(1)/(2)( d) a^(4)+b^(4)+c^(4)=(3)/(2)

If a+b+c=13,a^(2)+b^(2)+c^(2)=69, then find ab+bc+ca.-50 (b) 50 (c) 69 (d) 75