Home
Class 14
MATHS
Find the value of [(525 +252)^(2)-(525 -...

Find the value of `[(525 +252)^(2)-(525 -252)^(2)]//(525 xx 252)` .
A. 3
B. 4
C. 5
D. 6

A

C

B

A

C

B

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(525 + 252)^2 - (525 - 252)^2}{525 \times 252}\), we can use the algebraic identity that states: \[ a^2 - b^2 = (a + b)(a - b) \] ### Step 1: Identify \(a\) and \(b\) Let: - \(a = 525 + 252\) - \(b = 525 - 252\) ### Step 2: Apply the identity Using the identity, we can rewrite the expression as: \[ (525 + 252)^2 - (525 - 252)^2 = [(525 + 252) + (525 - 252)][(525 + 252) - (525 - 252)] \] ### Step 3: Simplify the terms Calculating the terms: - \((525 + 252) + (525 - 252) = 525 + 252 + 525 - 252 = 2 \times 525 = 1050\) - \((525 + 252) - (525 - 252) = 525 + 252 - 525 + 252 = 2 \times 252 = 504\) ### Step 4: Substitute back into the expression Now substituting back, we have: \[ (525 + 252)^2 - (525 - 252)^2 = 1050 \times 504 \] ### Step 5: Substitute into the original expression Now, substituting this back into the original expression gives us: \[ \frac{1050 \times 504}{525 \times 252} \] ### Step 6: Simplify the fraction We can simplify this expression. Notice that: \[ 1050 = 2 \times 525 \quad \text{and} \quad 504 = 2 \times 252 \] Thus, we can rewrite it as: \[ \frac{(2 \times 525) \times (2 \times 252)}{525 \times 252} = \frac{4 \times 525 \times 252}{525 \times 252} \] ### Step 7: Cancel out the common terms The \(525 \times 252\) in the numerator and denominator cancels out: \[ = 4 \] ### Final Answer Thus, the value of the expression is \(4\).
Promotional Banner