Home
Class 14
MATHS
If 2 cos theta =sqrt(3) , cos theta xx t...

If `2 cos theta =sqrt(3) , cos theta xx tan theta = `?
A. 1
B. `sqrt(3)//3`
C. `sqrt(3)//2`
D. `1//2`

A

A

B

D

C

B

D

C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the question: 1. **Given Equation**: \[ 2 \cos \theta = \sqrt{3} \] 2. **Solving for \(\cos \theta\)**: To find \(\cos \theta\), we divide both sides of the equation by 2: \[ \cos \theta = \frac{\sqrt{3}}{2} \] 3. **Finding \(\theta\)**: The value of \(\theta\) for which \(\cos \theta = \frac{\sqrt{3}}{2}\) is: \[ \theta = 30^\circ \] 4. **Finding \(\tan \theta\)**: We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] For \(\theta = 30^\circ\): \[ \sin 30^\circ = \frac{1}{2} \quad \text{and} \quad \cos 30^\circ = \frac{\sqrt{3}}{2} \] Therefore: \[ \tan 30^\circ = \frac{\sin 30^\circ}{\cos 30^\circ} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \] 5. **Calculating \(\cos \theta \cdot \tan \theta\)**: Now we can find \(\cos \theta \cdot \tan \theta\): \[ \cos \theta \cdot \tan \theta = \cos 30^\circ \cdot \tan 30^\circ \] Substituting the values: \[ = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2} \] 6. **Final Answer**: Thus, the value of \(\cos \theta \cdot \tan \theta\) is: \[ \frac{1}{2} \] The correct answer is **D. \(\frac{1}{2}\)**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2 cos theta = sqrt3, cos theta xx tan theta = ?

cos theta - sqrt3 sin theta = 1

If sin theta+sqrt(3)cos theta>=1 then

solve sqrt(3)cos theta+sin theta=sqrt(2)

Solve: sqrt(3)cos theta+sin theta=sqrt(2)

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .