Home
Class 14
MATHS
Expand (a-4)^(3) A. a^(3)-12a^(2) +48a...

Expand `(a-4)^(3)`
A. `a^(3)-12a^(2) +48a +64`
B. `a^(3) -48a^(2) +12 a -64`
C. `a^(3) +12 a^(2) -48a -64`
D. `a^(3) -12 a^(2) + 48a -64`

A

C

B

A

C

D

D

B

Text Solution

AI Generated Solution

The correct Answer is:
To expand \((a - 4)^3\), we can use the binomial expansion formula for the cube of a binomial, which is given by: \[ (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \] In our case, \(a\) is \(a\) and \(b\) is \(4\). Therefore, we can substitute \(a\) and \(b\) into the formula: 1. **Calculate \(a^3\)**: \[ a^3 = a^3 \] 2. **Calculate \(-3a^2b\)**: \[ -3a^2b = -3a^2(4) = -12a^2 \] 3. **Calculate \(3ab^2\)**: \[ 3ab^2 = 3(a)(4^2) = 3(a)(16) = 48a \] 4. **Calculate \(-b^3\)**: \[ -b^3 = -4^3 = -64 \] Now, we can combine all these terms together: \[ (a - 4)^3 = a^3 - 12a^2 + 48a - 64 \] Thus, the expanded form of \((a - 4)^3\) is: \[ a^3 - 12a^2 + 48a - 64 \] Now, let's match this with the given options: A. \(a^3 - 12a^2 + 48a + 64\) B. \(a^3 - 48a^2 + 12a - 64\) C. \(a^3 + 12a^2 - 48a - 64\) D. \(a^3 - 12a^2 + 48a - 64\) The correct answer is **D**: \(a^3 - 12a^2 + 48a - 64\).
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise :1-64a^(3)-12a+48a^(2)

The value of 64 a ^(3) + 48 a ^(2) b + 12 a ^(2) b + b ^(3) at a =1 and b =-1 is

3 6 12 24 48 96 ?

2^(3^2) = (a)64 (b) 32 (c)256 (d) 512