Home
Class 14
MATHS
Given w = -2, x = 3, y = 0 & z = -(1)/(2...

Given `w = -2, x = 3, y = 0` & `z = -(1)/(2)`. Find the value of 2x(w-z).
A. -9
B. 9
C. 8
D. -8

A

B

B

D

C

A

D

C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( 2x(w - z) \) given the values \( w = -2 \), \( x = 3 \), \( y = 0 \), and \( z = -\frac{1}{2} \). ### Step 1: Substitute the values into the expression We start with the expression: \[ 2x(w - z) \] Substituting the values of \( x \), \( w \), and \( z \): \[ 2 \cdot 3 \cdot (-2 - (-\frac{1}{2})) \] ### Step 2: Simplify the expression inside the parentheses Now, simplify \( w - z \): \[ w - z = -2 - (-\frac{1}{2}) = -2 + \frac{1}{2} \] To combine these, we can convert \(-2\) into a fraction: \[ -2 = -\frac{4}{2} \] Now we can add: \[ -\frac{4}{2} + \frac{1}{2} = -\frac{4 - 1}{2} = -\frac{3}{2} \] ### Step 3: Substitute back into the expression Now we substitute back into the expression: \[ 2 \cdot 3 \cdot (-\frac{3}{2}) \] ### Step 4: Calculate the multiplication First, calculate \( 2 \cdot 3 \): \[ 2 \cdot 3 = 6 \] Now multiply by \(-\frac{3}{2}\): \[ 6 \cdot (-\frac{3}{2}) = -\frac{18}{2} = -9 \] ### Final Answer Thus, the value of \( 2x(w - z) \) is: \[ \boxed{-9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given w = - 2, x = 3, y = 0 & z = - (1)/(2) . Find the value of (z)/(w) + x . A. 3 (1)/(4) B. - 3 (1)/(4) C. 3.2 D. 3.5

Given,w = -2, x = 3,y = 0, and z = -frac(1)(2).Find the value of 2(w^2 + x^2 + y^2)

Given w=-2,x=3,y=0 & Z=-1/2, Find the value of w^2 sqrt((Z^2+y^2)) .

Given that 10^0.48=x , 10^(0.70)=y and x^z=y^2, then the value of z is close to a. 1. 45 b. 1. 88 c. 3. 7 d. 2. 9

If x+2y+3z=81, x, y, z in W find the number of solutions

If [xy4z+6x+y]=[8w06], then find the values of x,y,z and w

If [(x y,4),(z+6,x+y)]=[(8,w),(0, 6)] , write the value of (x+y+z) .

If [[x-y,z2x-y,w]]=[[-1,40,5]] Then find the value of x+y

If [{:(x -y ,4),(z + 6 , x + y ):}] = [{:(8, w),(0,0):}] , then the value of (x + y + w + z) is