Home
Class 14
MATHS
If Tan A = (15)/(8) and Tan B = (7)/(24)...

If `Tan A = (15)/(8)` and `Tan B = (7)/(24)`, then Tan (A + B) = ?
A. `(416)/(87)`
B. `(87)/(416)`
C. `(304)/(297)`
D. `(297)/(304)`

A

C

B

A

C

B

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \tan(A + B) \) given \( \tan A = \frac{15}{8} \) and \( \tan B = \frac{7}{24} \), we can use the formula for the tangent of the sum of two angles: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] ### Step 1: Substitute the values of \( \tan A \) and \( \tan B \) Substituting the given values into the formula: \[ \tan(A + B) = \frac{\frac{15}{8} + \frac{7}{24}}{1 - \left(\frac{15}{8} \cdot \frac{7}{24}\right)} \] ### Step 2: Find a common denominator for the numerator To add \( \frac{15}{8} \) and \( \frac{7}{24} \), we need a common denominator. The least common multiple of 8 and 24 is 24. Convert \( \frac{15}{8} \) to have a denominator of 24: \[ \frac{15}{8} = \frac{15 \times 3}{8 \times 3} = \frac{45}{24} \] Now we can add: \[ \frac{45}{24} + \frac{7}{24} = \frac{45 + 7}{24} = \frac{52}{24} \] ### Step 3: Calculate the denominator Now, calculate \( 1 - \left(\frac{15}{8} \cdot \frac{7}{24}\right) \): First, calculate \( \frac{15}{8} \cdot \frac{7}{24} \): \[ \frac{15 \cdot 7}{8 \cdot 24} = \frac{105}{192} \] Now, we need to find \( 1 - \frac{105}{192} \): Convert 1 to a fraction with a denominator of 192: \[ 1 = \frac{192}{192} \] So, \[ 1 - \frac{105}{192} = \frac{192 - 105}{192} = \frac{87}{192} \] ### Step 4: Substitute back into the formula Now substitute back into the formula for \( \tan(A + B) \): \[ \tan(A + B) = \frac{\frac{52}{24}}{\frac{87}{192}} \] ### Step 5: Simplify the expression To divide by a fraction, multiply by its reciprocal: \[ \tan(A + B) = \frac{52}{24} \cdot \frac{192}{87} \] Now simplify: \[ = \frac{52 \cdot 192}{24 \cdot 87} \] ### Step 6: Simplify the fractions First, simplify \( \frac{192}{24} = 8 \): \[ = \frac{52 \cdot 8}{87} = \frac{416}{87} \] ### Final Answer Thus, the value of \( \tan(A + B) \) is: \[ \boxed{\frac{416}{87}} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If tan A =frac(15)(8) and tan B = frac (7)(24) then cos(A - B) = ? A) frac(297)(4215) B) frac(304)(425) C) frac(87)(425) D) frac(416)(425)

tan A+tan B+tan C=

Knowledge Check

  • If Tan A = (15)/(8) and Tan B = (7)/(24) , then Tan ( A - B ) = ? A. (304)/(297) B. (304)/(425) C. (416)/( 87) D. (87)/( 416)

    A
    A
    B
    B
    C
    D
    D
    C
  • If Tan A=15/8 and Tan B=7/24 , then Cos (A+B)=?

    A
    `87/(425)`
    B
    `304/425`
    C
    `297/425`
    D
    `416/425`
  • If A+C =B , then tan A tan B tan C =

    A
    tan A tan B `+` tan C
    B
    tan B- tan C - tan A
    C
    tan A `+` tan B - tan C
    D
    `- ( Sigma tan A )`
  • Similar Questions

    Explore conceptually related problems

    (tan A + tan B) / (tan (A + B)) + (tan A-tan B) / (tan (AB)) =

    If (cos(A-B))/(cos(A+B))=(8)/(3) then tan A tan B is

    (tan A + tan B) / (tan A-tan B) = (sin (A + B)) / (sin (AB))

    If tan(A-B)=(7)/(24),tan A=(4)/(3) where A,B acute then A+B=

    If A+C=B , then tan A tan B tan C = ?