Home
Class 14
MATHS
If sin theta =40//41, then cot theta is...

If `sin theta =40//41`, then `cot theta ` is
A. 40/9
B. 9/40
C. 9/41
D. 41/9

A

D

B

A

C

B

D

C

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \cot \theta \) given that \( \sin \theta = \frac{40}{41} \), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Given \( \sin \theta = \frac{40}{41} \), we can calculate \( \sin^2 \theta \): \[ \sin^2 \theta = \left(\frac{40}{41}\right)^2 = \frac{1600}{1681} \] ### Step 2: Calculate \( \cos^2 \theta \) Now, we can find \( \cos^2 \theta \): \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \frac{1600}{1681} = \frac{1681 - 1600}{1681} = \frac{81}{1681} \] ### Step 3: Calculate \( \cos \theta \) Taking the square root to find \( \cos \theta \): \[ \cos \theta = \sqrt{\frac{81}{1681}} = \frac{9}{41} \] ### Step 4: Calculate \( \cot \theta \) Now, we can find \( \cot \theta \) using the definition: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{9}{41}}{\frac{40}{41}} = \frac{9}{40} \] ### Conclusion Thus, the value of \( \cot \theta \) is \( \frac{9}{40} \), which corresponds to option B.
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta = 40/9 , then sec theta and cos theta .

If sin A=(9)/(41), compute cos A and tan A

If tan 4theta = cot(40^@ – 2theta) , then theta is equal to:

Slove : sin9theta =sintheta

The mean of 25 values was 40 . But one value was written as 25 instead of 50 . The corrected means is . A.39 B.41 C.40 D. 42

If cot theta = (40)/(9) , find the values of cosec theta and sin theta .

If (sin A + cos A) / ( sin A - cos A) = 5/4 , the value of (tan 2 A + 1) / (tan 2 A - 1) = ? A. 41/40 B. 12/13 C. 40 / 41 D. 3/5

If tan theta=-4//5 and theta is not is the second quadrant, then : csc theta = A) -sqrt41//51 B) -sqrt41//4 C) -51sqrt41 D) sqrt41//5