Home
Class 11
MATHS
Prove that : ^nPr= "^(n-1)Pr+r ^(n-1)P(r...

Prove that : `^nP_r= "^(n-1)P_r+r ^(n-1)P_(r-1)`, for all natural numbers n and r for which the symbols are defined.

Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE|319 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise EXERCISE|169 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise EXERCISE|348 Videos

Similar Questions

Explore conceptually related problems

Prove that : ^nP_r= n"^(n-1)P_(r-1) , for all natural numbers n and r for which the symbols are defined.

Prove that "^nP_r= ^nC_r ^rP_r .

Show that ^nP_n= "^nP_(n-1) for all natural numbers n .

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that: sum_(r=0)^(n) 3^( r) ""^(n)C_(r) = 4^(n) .

Find r if : ^5P_r= "^6P_(r-1) .

Find r if "^5P_r =2 "^6P_(r-1) .

Find r if "^5P_r = "^6P_(r-1) .

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

If "^(n-1)C_r : ^nC_r : ^(n+1)C_r= 6:9: 13 , find n and r.