Home
Class 11
MATHS
If " C(n,7)= C(n,5), find C(n,4)....

If `" C(n,7)= C(n,5)`, find `C(n,4)`.

Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE|319 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise EXERCISE|169 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise EXERCISE|348 Videos

Similar Questions

Explore conceptually related problems

If C(n,10)=C(n,12), determine n and hence C(n,5).

If .^(n)C_(9)=.^(n)C_(7) , find n.

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

The vertices of a triangle are A(1,1),\ B(4,5)a n d\ C(6, 13)dot Find Cos\ Adot

If ""^(n)C_(r ): ""^(n)C_(r+1)=1:2 and ""^(n)C_(r+1): ""^(n)C_(r+2)=2:3 , find n and r.

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + ...+ C_(n)x^(n) , prove that (C_(1))/(2) + (C_(3))/(4) + (C_(5))/(6) + …= (2^(n)-1)/(n+1) .

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .