Home
Class 11
MATHS
Prove that : ^2C1+ ^3C1+ ^4C1= "^3C2+ ^...

Prove that : `^2C_1+ ^3C_1+ ^4C_1= "^3C_2+ ^4C_2`.

Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE|319 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise EXERCISE|169 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise EXERCISE|348 Videos

Similar Questions

Explore conceptually related problems

Prove that 1 + ^3C_1+ ^4C_2= ^5C_3 .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If C_1,C_2,C_3,C_4 are the coefficients of any four consecutive terms in the expansion of (1+ x)^n , prove that : C_1/(C_1+C_2)+C_3/(C_3+C_4)=(2C_2)/(C_2+C_3) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

Prove that "^(n-1)C_3+ ^(n-1)C_4 > ^nC_3 if n >7.

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .