Home
Class 11
MATHS
Prove that ""^nC0+3""^nC1+5""^nC2+.........

Prove that `""^nC_0+3""^nC_1+5""^nC_2+........+(2n+1)""^nC_n= (n+1)2^n`.

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^n= ""^nC_0+""^nC_1x+""^nC_2x^2+.............+ ""^nC_n x^n , prove that : ""^nC_1-2""^nC_2+3""^nC_3-.......+(-1)^(n-1) n ""^nC_n=0 .

Prove that "^nP_r= ^nC_r ^rP_r .

If "^nC_8= ^nC_2 , find "^nC_2 .

If "^nC_8 = "^nC_2 , find "^nC_2 .

Prove that sum_(r=0)^n 3^r "^nC_r= 4^n .

Prove that "^nC_r ^rC_5= ^nC_5 ^(n-5)C_(r-5) .

Using Mathematical Induction, prove that : "^mC_0 ^nC_k+ ^mC_1 ^nC_(k-1)+..........+ ^mC_k ^nC_0= ^(m+n)C_k , where m, n, r are positive integers and "^pC_q = 0 for p < q.

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .