Home
Class 11
MATHS
If (1 + x)^n= ""^nC0+""^nC1x+""^nC2x^2+....

If `(1 + x)^n= ""^nC_0+""^nC_1x+""^nC_2x^2+.............+ ""^nC_n x^n`, prove that : `""^nC_1-2""^nC_2+3""^nC_3-.......+(-1)^(n-1) n ""^nC_n=0`.

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos

Similar Questions

Explore conceptually related problems

Prove that ""^nC_0+3""^nC_1+5""^nC_2+........+(2n+1)""^nC_n= (n+1)2^n .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .

If "^nC_8 = "^nC_2 , find "^nC_2 .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-2C_1+3C_2-.........+(-1)^n (n+1)C_n=0 .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

If m= "^nC_2 , prove that "^m C_2 =3xx ^(n+1)C_4 .

Prove that "^nP_r= ^nC_r ^rP_r .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-C_1/2+C_2/3-.....+(-1)^n C_n/(n+1)= 1/(n+1) .

Prove that "^nC_r ^rC_5= ^nC_5 ^(n-5)C_(r-5) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)