Home
Class 11
MATHS
If (1 + x)^n= C0+C1x+C2x^2+................

If `(1 + x)^n= C_0+C_1x+C_2x^2+.............+ C_n x^n`, find the values of `C_0^2+C_1^2+C_2^2+.....+C_n^2`.

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : 2C_0+2^2 C_1/2+2^3 C_2/3+........+2^(n+1) C_n/ (n+1)= (3^(n+1)-1)/(n+1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-C_1/2+C_2/3-.....+(-1)^n C_n/(n+1)= 1/(n+1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0C_n+C_1C_(n-1)+C_2C_(n-2)+.....+ C_nC_0= ((2n!))/(n!)^2 .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-2C_1+3C_2-.........+(-1)^n (n+1)C_n=0 .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : 2C_0+5 C_1+8C_2+...+(3n+2)C_n=(3n+4)2^(n-1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0+1/3 C_2+1/5C_4+1/7C_6+.......... = 2^n/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : (1+C_1/C_0)(1+C_2/C_1)(1+C_3/C_2).... (1+C_n/ C_(n-1))=((n+1)^n)/(n!) .