Home
Class 11
MATHS
Prove that (C0+C1)(C1+C2)(C2+C3)(C3+...

Prove that
`(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n)` = `(C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos

Similar Questions

Explore conceptually related problems

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

Prove that : ^2C_1+ ^3C_1+ ^4C_1= "^3C_2+ ^4C_2 .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

Prove that C_0C_r+C_1 C_(r+1)+ C_2 C_(r+2)+...............+c_(n-r) C_n=((2n)!)/((n-r)!(n+r)!)

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : (1+C_1/C_0)(1+C_2/C_1)(1+C_3/C_2).... (1+C_n/ C_(n-1))=((n+1)^n)/(n!) .

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

3C_0+3^2(C_1)/2+3^3(C_2)/3+.............3^(n+1)*(C_n)/(n+1) equal to

Prove that "^(n-1)C_3+ ^(n-1)C_4 > ^nC_3 if n >7.

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .