Home
Class 11
MATHS
If C1,C2,C3,C4 are the coefficients of a...

If `C_1,C_2,C_3,C_4` are the coefficients of any four consecutive terms in the expansion of `(1+ x)^n`, prove that : `C_1/(C_1+C_2)+C_3/(C_3+C_4)=(2C_2)/(C_2+C_3)`.

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos

Similar Questions

Explore conceptually related problems

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

Prove that 1 + ^3C_1+ ^4C_2= ^5C_3 .

If C_0,C_1,C_2,........, C_n denote the coefficients in the expansion of (1+ x)^n , then the value of : C_1+2C_2+3 C_3+..... +nC_n is :

Find the coefficient of x^4 in the expansion of (1+x)^n (1-x)^n . Deduce that C_2=C_0C_4-C_1C_3+C_2C_2-C_3C_1+ C_4 C_0 .

Prove that : ^2C_1+ ^3C_1+ ^4C_1= "^3C_2+ ^4C_2 .

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)(r+1)(C_(r))

Find the coefficient of x^(n-r) in the expansion of (x+1)^n (1+x)^n . Deduce that C_0C_r+C_1C_(r-1)+......+C_(n-r) C_n= ((2n!))/((n+r)!(n-r)!) .

If m= "^nC_2 , prove that "^m C_2 =3xx ^(n+1)C_4 .

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

Show that the effective capacitance C of a series combination of three capacitors of capactiances C_1,C_2 and C_3 is given by C = (C_1C_2C_3)/(C_1C_2+C_3+C_3C_1)