Home
Class 11
MATHS
For the expansion of (1 + x)^n= C0+C1x+C...

For the expansion of `(1 + x)^n= C_0+C_1x+C_2x^2+......+ C_n x^n`, show that `C_j` 's taken two at a time represented by `Sigma C_(ij), 0lei lej len` is equal to `2^(2n-1)-((2n)!)/(2(n!)^2)` .

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ 2C_1 +.........+2""^nC_n=3^n .

In the expansion of (x^(2) + 1 + (1)/(x^(2)))^(n), n in N ,

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leilt j le n)(sumsum)jC_(i)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .

If (1 + x)^n= C_0+C_1x+C_2x^2+.............+ C_n x^n , find the values of C_0^2+C_1^2+C_2^2+.....+C_n^2 .

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)(i +j)(C_(i)pmC_(j) )^(2)

If (1 + x)^(n) = C_(0) + C_(1) x +C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+x)^n = C_0 +C_1x+C_2x^2+……… +C_nx^n , then prove that : C_1 -2C_2+………….+(-1)^(n-1)nC_n =0