Home
Class 11
MATHS
Let a1, a2,......, an be fixed real numb...

Let `a_1, a_2,......, a_n` be fixed real numbers and define a function `f(x)=(x-a_(1))(x-a_(2)) ......(x-a_(n))` . What is `lim_(x rarr a_1)f(x)` ? For some `a ne a_(1),a_(2),.........a_(n)`, compute `lim_(x rarr a) f(x)` .

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE|334 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE|86 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE|289 Videos

Similar Questions

Explore conceptually related problems

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

If the function f(x) satisfies lim_(x rarr 1)(f(x)-2)/(x^2-1)=pi , evaluate lim_(x rarr 1) f(x) .

If the function f (x) satisfies lim_(x rarr 1)(f(x)-2)/(x^2-1)=pi , evaluate lim_(xrarr1)f(x) .

The number of functions from f:{a_(1),a_(2),...,a_(10)} rarr {b_(1),b_(2),...,b_(5)} is

Let a_(1),a_(2),a_(n) be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 . Prove that lim_(xtooo)((a_(n))/(2^(n-1)))=2/(pi)

Find lim_(x rarr 1)f(x) where f(x)= {(x^2-1,xle1),(-x^2-1,x>1):}

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

If a_1,a_2,a_3,.....,a_(n+1) be (n+1) different prime numbers, then the number of different factors (other than1) of a_1^m.a_2.a_3...a_(n+1) , is

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

If the function f(x) is defined as : f(x) =a_(0) +a_(1)x^(2)+…..+ a_(10)x^(20) where 0 lt a_(0) lt …. < a_(10) . Then f(x) has in RR :

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE
  1. Let a1, a2,......, an be fixed real numbers and define a function f(x)...

    Text Solution

    |

  2. Evaluate the following limit if they exist : lim(x rarr 2) 4.

    Text Solution

    |

  3. Evaluate the following limit if they exist : lim(r to 1) pir^(2) .

    Text Solution

    |

  4. Evaluate the given limit : lim(x to pi) (x - 22/7)

    Text Solution

    |

  5. Evaluate the following limit if they exist : lim(x rarr 2) (3-x) .

    Text Solution

    |

  6. Evaluate the following limit if they exist : lim(x rarr 1) (x^3-x^2+...

    Text Solution

    |

  7. Evaluate the following limit if they exist : lim(x rarr 3) ( x(x+1))...

    Text Solution

    |

  8. Evaluate the following limit if they exist : lim(x rarr 0) (3x+1)/(x...

    Text Solution

    |

  9. Evaluate the following limit if they exist : lim(x rarr 0) (ax+b)/(c...

    Text Solution

    |

  10. Evaluate the following limit if they exist : lim(x rarr 1) (x^2+1)/(...

    Text Solution

    |

  11. Evaluate the following limit if they exist : lim(x rarr 3) (x^2-4x)/...

    Text Solution

    |

  12. Evaluate the following limit if they exist : lim(x rarr 2) (x^3-4x^2...

    Text Solution

    |

  13. Evaluate the following limit if they exist : lim(x rarr 2) (x^2-4)/(...

    Text Solution

    |

  14. Evaluate the following limit if they exist : lim(x rarr -1) (x^3-3x+...

    Text Solution

    |

  15. Evaluate the following limit if they exist : lim(x rarr 0) ((x-1)^2+...

    Text Solution

    |

  16. Evaluate the following limit if they exist : lim(x rarr -1) [1+x+x^2...

    Text Solution

    |

  17. Evaluate the following limit : lim(x rarr 1) (x-1)/(x+1) .

    Text Solution

    |

  18. Evaluate the following limit : lim(x rarr -2) (1/x+1/2)/ (x+2).

    Text Solution

    |

  19. Evaluate the following limit : lim(x rarr -1) (x^2-1)/ (x+1) .

    Text Solution

    |

  20. Evaluate the following limit : lim(x rarr 1) (x^3-1)/ (x-1) .

    Text Solution

    |

  21. Evaluate the following limit : lim(x rarr 2) (x^3-8)/(x^2-4) .

    Text Solution

    |