Home
Class 11
MATHS
Evaluate underset(zto1)(lim)(z^(1//3)-1)...

Evaluate `underset(zto1)(lim)(z^(1//3)-1)/(z^(1//6)-1)`

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE|334 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE|86 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE|289 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits:- lim_(z rarr 1)(z^(1/3)-1)/(z^(1/6)-1)

Evaluate |{:(.^(x)C_(1),,.^(x)C_(2),,.^(x)C_(3)),(.^(y)C_(1),,.^(y)C_(2),,.^(y)C_(3)),(.^(z)C_(1),,.^(z)C_(2),,.^(z)C_(3)):}|

If z^2+z+1=0 where z is a complex number, then the value of (z+1/z)^2+(z^2+1/z^2)^2+....+(z^6+1/z^6)^2 is

Let z_(1),z_(2) and z_(3) be three non-zero complex numbers and z_(1) ne z_(2) . If |{:(abs(z_(1)),abs(z_(2)),abs(z_(3))),(abs(z_(2)),abs(z_(3)),abs(z_(1))),(abs(z_(3)),abs(z_(1)),abs(z_(2))):}|=0 , prove that (i) z_(1),z_(2),z_(3) lie on a circle with the centre at origin. (ii) arg(z_(3)/z_(2))=arg((z_(3)-z_(1))/(z_(2)-z_(1)))^(2) .

bb"statement-1" " Let " z_(1),z_(2) " and " z_(3) be htree complex numbers, such that abs(3z_(1)+1)=abs(3z_(2)+1)=abs(3z_(3)+1) " and " 1+z_(1)+z_(2)+z_(3)=0, " then " z_(1),z_(2),z_(3) will represent vertices of an equilateral triangle on the complex plane. bb"statement-2" z_(1),z_(2),z_(3) represent vertices of an triangle, if z_(1)^(2)+z_(2)^(2)+z_(3)^(2)+z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1)=0

If arg (z^(1//2))=(1)/(2)arg(z^(2)+barzz^(1//3)), find the value of |z|.

Show that the triangle whose vertices are z_(1)z_(2)z_(3)andz_(1)'z_(2)'z_(3)' are directly similar , if |{:(z_(1),z'_(1),1),(z_(2),z'_(2),1),(z_(3),z'_(3),1):}|=0

If z_(1), z_(2) are 1-i, -2 + 4i respectively, find I_(m)((z_(1)z_(2))/(bar(z_(1)))) .

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE
  1. Find all possible values of a, if : lim(x rarr a) (x^9-a^9)/(x-a)= l...

    Text Solution

    |

  2. Find all possible values of a, if : lim(x rarr a) (x^3-a^3)/(x-a)= l...

    Text Solution

    |

  3. Evaluate underset(zto1)(lim)(z^(1//3)-1)/(z^(1//6)-1)

    Text Solution

    |

  4. Prove that : lim(x rarr 0) (|x|)/(x) does not exist.

    Text Solution

    |

  5. Prove that : lim(x rarr 0)(x)/(|x|) does not exist.

    Text Solution

    |

  6. Prove that : lim(x rarr 0^+)(x)/(|x|)=1 .

    Text Solution

    |

  7. Prove that : lim(x rarr 0^-)(x)/(|x|)= -1 .

    Text Solution

    |

  8. If the function f (x) satisfies lim(x rarr 1)(f(x)-2)/(x^2-1)=pi, eval...

    Text Solution

    |

  9. Find lim(x rarr 0) f(x), and lim(x rarr 1) f(x), where : f(x)= {(2x+3...

    Text Solution

    |

  10. Find lim(x rarr 0) f(x), where f (x) =|x|-5.

    Text Solution

    |

  11. Find underset(xrarr0)lim f(x), where f(x)={(|x|/x, xne0),(0, x=0):}

    Text Solution

    |

  12. Find underset(xrarr0)lim f(x), where f(x)={(|x|/x, xne0),(0, x=0):}

    Text Solution

    |

  13. Let f(x)= {(|x|+1,",", x<0),(0,",", x=0),(|x|-1,",", x>0.):} For what...

    Text Solution

    |

  14. If f(x)= {:(mx^(2)+n, x lt 0),(nx +m,0le x le 1),(nx^(3) +m, x gt 1):}...

    Text Solution

    |

  15. Evaluate the following : lim(x rarr 0)(cos x)/(pi-x) .

    Text Solution

    |

  16. Evaluate the following : lim(theta rarr 0)(1-cos theta)/(2 theta^2)...

    Text Solution

    |

  17. Evaluate the following : lim(x rarr 0)(1-cos 4x)/(x^2) .

    Text Solution

    |

  18. Evaluate the following : lim(x rarr 0)(1-cos 4x)/(x^2) .

    Text Solution

    |

  19. Evaluate the following : lim(x rarr 0)(1-cos 2x)/(3x^2) .

    Text Solution

    |

  20. Evaluate the following : lim(theta rarr 0)(1-cos 4 theta)/(1-cos 6 ...

    Text Solution

    |